File size: 3,427 Bytes
80ebd45
 
4e7548f
3428530
1da425c
3428530
1da425c
80ebd45
1da425c
 
 
 
 
 
 
 
 
 
80ebd45
 
3428530
 
1da425c
3428530
 
 
 
 
0a44c9b
1da425c
 
4e7548f
1da425c
 
 
 
 
 
 
 
 
 
 
9f9e12c
1da425c
4e7548f
 
3428530
6db7dd2
1b4bfa7
6db7dd2
 
 
 
 
 
 
 
 
 
1b4bfa7
6db7dd2
 
 
 
 
 
 
1da425c
6db7dd2
 
 
4e7548f
1b4bfa7
4e7548f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import spaces
import subprocess
import os
from PIL import Image
import ffmpeg
from pydub import AudioSegment

import numpy as np
import soundfile as sf

def save_audio_mp3(audio_tuple, filename):
    sampling_rate, audio_data = audio_tuple
    audio_bytes = np.array(audio_data, dtype=np.int16).tobytes()
    audio_segment = AudioSegment(audio_bytes, sample_width=2, frame_rate=sampling_rate, channels=1)
    audio_segment.export(filename, format="mp3")
    
    return f"Audio saved successfully as {filename}"


def audio_video():
    input_video = ffmpeg.input('results/result_voice.mp4')
    input_audio = ffmpeg.input('sample_data/uploaded_audio.mp3')
    os.system(f"rm -rf results/final_output.mp4")
    ffmpeg.concat(input_video, input_audio, v=1, a=1).output('results/final_output.mp4').run()
    
    return "results/final_output.mp4"

@spaces.GPU
def run_infrence(input_image,input_audio):
    pil_image = Image.fromarray(input_image.astype(np.uint8))

    save_dir = "sample_data"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    
    # Save input image 
    filename = os.path.join(save_dir, "uploaded_image.png")
    pil_image.save(filename)

    #Save input audio
    save_audio_mp3(input_audio, "sample_data/uploaded_audio.mp3")

    command = f'python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face sample_data/uploaded_image.png --audio sample_data/uploaded_audio.mp3'
    process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True)
    output, error = process.communicate()

    return audio_video()
    
def run():
    with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;} h3,h1,h2,p {color: black;}") as demo:
        gr.Markdown("<p style='text-align: left;font-size:18px'>"+ "Hey, check out our Gradio app! It's like having a magic tool for making videos. You put in a picture and audio, and it creates a video where the lips move perfectly with the audio. It's super easy – just upload your picture and audio, and click 'generate'! You've got a cool video where it looks like the person in the picture is speaking." + "</p>")
        with gr.Group():    
            with gr.Row():
                input_image = gr.Image(label="Input Image")
                input_audio = gr.Audio(label="Input Audio")
                video_out = gr.Video(show_label=True,label="Output")
            with gr.Row():
                btn = gr.Button("Generate")
        gr.Markdown("<h1 style='text-align: center;'>"+ "Demo Inputs and Output" + "</h1>")   
        with gr.Row():
            gr.Image("sample/spark.png",label="Input Image")
            gr.Audio("sample/spark_1.1.mp3",label="Input Audio")
            gr.Video("sample/final_output.mp4",label="Output")
        
        gr.Markdown("""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at 
                    <a href="mailto:[email protected]" target="_blank">[email protected]</a> 
                    </p><p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""")
    
        btn.click(run_infrence,inputs=[input_image,input_audio], outputs=[video_out])
        demo.queue()
        demo.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    run()