Wav2lip-ZeroGPU / app.py
pragnakalp's picture
Update app.py
4e7548f verified
raw
history blame
1.5 kB
import gradio as gr
import spaces
import torch
import subprocess
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' πŸ€—
return f"Hello {zero + n} Tensor"
def run_infrence(input_video,input_audio):
audio = "sample_data/sir.mp3"
video = "sample_data/spark_input.mp4"
command = f'python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face "{video}" --audio "{audio}"'
print("running ")
# Execute the command
process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True)
# Get the output
output, error = process.communicate()
return output
def run():
with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>"+ "One Shot Talking Face from Text" + "</h1><br/><br/>")
with gr.Group():
# with gr.Box():
with gr.Row():
# with gr.Row().style(equal_height=True):
input_video = gr.Video(label="Input Video")
input_audio = gr.Audio(label="Input Audio")
video_out = gr.Video(show_label=True,label="Output")
with gr.Row():
btn = gr.Button("Generate")
btn.click(run_infrence,inputs=[input_video,input_audio], outputs=[video_out])
demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()