Spaces:
Sleeping
Sleeping
File size: 7,558 Bytes
38d6cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import pandas as pd
import torch
from typing import Tuple, List
from fpdf import FPDF
from pyhealth.medcode import InnerMap
from pyhealth.datasets import MIMIC3Dataset, SampleEHRDataset
from pyhealth.tasks import medication_recommendation_mimic3_fn, diagnosis_prediction_mimic3_fn
from pyhealth.models import GNN
from pyhealth.explainer import HeteroGraphExplainer
@st.cache_resource(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
def load_gnn() -> Tuple[torch.nn.Module, torch.nn.Module, torch.nn.Module, torch.nn.Module,
MIMIC3Dataset, SampleEHRDataset, SampleEHRDataset]:
dataset = MIMIC3Dataset(
root=st.secrets.s3,
tables=["DIAGNOSES_ICD","PROCEDURES_ICD","PRESCRIPTIONS","NOTEEVENTS_ICD"],
code_mapping={"NDC": ("ATC", {"target_kwargs": {"level": 4}})},
)
mimic3sample_med = dataset.set_task(task_fn=medication_recommendation_mimic3_fn)
mimic3sample_diag = dataset.set_task(task_fn=diagnosis_prediction_mimic3_fn)
model_med_ig = GNN(
dataset=mimic3sample_med,
convlayer="GraphConv",
feature_keys=["procedures", "diagnosis", "symptoms"],
label_key="medications",
k=0,
embedding_dim=128,
hidden_channels=128
)
model_med_gnn = GNN(
dataset=mimic3sample_med,
convlayer="GraphConv",
feature_keys=["procedures", "diagnosis", "symptoms"],
label_key="medications",
k=0,
embedding_dim=128,
hidden_channels=128
)
model_diag_ig = GNN(
dataset=mimic3sample_diag,
convlayer="GraphConv",
feature_keys=["procedures", "medications", "symptoms"],
label_key="diagnosis",
k=0,
embedding_dim=128,
hidden_channels=128
)
model_diag_gnn = GNN(
dataset=mimic3sample_diag,
convlayer="GraphConv",
feature_keys=["procedures", "medications", "symptoms"],
label_key="diagnosis",
k=0,
embedding_dim=128,
hidden_channels=128
)
return model_med_ig, model_med_gnn, model_diag_ig, model_diag_gnn, dataset, mimic3sample_med, mimic3sample_diag
@st.cache_data(hash_funcs={torch.Tensor: lambda _: None})
def get_list_output(y_prob: torch.Tensor, last_visit: pd.DataFrame, task: str, _mimic3sample: SampleEHRDataset,
top_k: int = 10) -> List[str]:
sorted_indices = []
for i in range(len(y_prob)):
top_indices = np.argsort(-y_prob[i, :])[:top_k]
sorted_indices.append(top_indices)
list_output = []
# get the list of all labels in the dataset
if task == "medications":
list_labels = _mimic3sample.get_all_tokens('medications')
atc = InnerMap.load("ATC")
elif task == "diagnosis":
list_labels = _mimic3sample.get_all_tokens('diagnosis')
icd9 = InnerMap.load("ICD9CM")
sorted_indices = list(sorted_indices)
# iterate over the top indexes for each sample in test_ds
for (i, sample), top in zip(last_visit.iterrows(), sorted_indices):
# create an empty list to store the recommended medications for this sample
sample_list_output = []
# iterate over the top indexes for this sample
for k in top:
# append the medication at the i-th index to the recommended medications list for this sample
if task == "medications":
sample_list_output.append(atc.lookup(list_labels[k]))
elif task == "diagnosis":
if list_labels[k].startswith("E"):
list_labels[k] = list_labels[k] + "0"
sample_list_output.append(icd9.lookup(list_labels[k]))
# append the recommended medications for this sample to the recommended medications list
list_output.append(sample_list_output)
return list_output, sorted_indices
def explainability(model: GNN, explain_dataset: SampleEHRDataset, selected_idx: int,
visualization: str, algorithm: str, task: str, threshold: int):
explainer = HeteroGraphExplainer(
algorithm=algorithm,
dataset=explain_dataset,
model=model,
label_key=task,
threshold_value=threshold,
top_k=threshold,
feat_size=128,
root="./streamlit_results/",
)
if task == "medications":
visit_drug = explainer.subgraph['visit', 'medication'].edge_index
visit_drug = visit_drug.T
n = 0
for vis_drug in visit_drug:
vis_drug = np.array(vis_drug)
if vis_drug[1] == selected_idx:
break
n += 1
elif task == "diagnosis":
visit_diag = explainer.subgraph['visit', 'diagnosis'].edge_index
visit_diag = visit_diag.T
n = 0
for vis_diag in visit_diag:
vis_diag = np.array(vis_diag)
if vis_diag[1] == selected_idx:
break
n += 1
explainer.explain(n=n)
if visualization == "Explainable":
explainer.explain_graph(k=0, human_readable=True, dashboard=True)
else:
explainer.explain_graph(k=0, human_readable=False, dashboard=True)
explainer.explain_results(n=n)
explainer.explain_results(n=n, doctor_type="Internist_Doctor")
HtmlFile = open("streamlit_results/explain_graph.html", 'r', encoding='utf-8')
source_code = HtmlFile.read()
components.html(source_code, height=520)
def gen_pdf(patient, name, lastname, visit, list_output, medical_scenario, internist_scenario):
pdf = FPDF()
pdf.add_page()
pdf.add_font("OpenSans", style="", fname="font/OpenSans.ttf")
pdf.add_font("OpenSans", style="B", fname="font/OpenSans-Bold.ttf")
# Title
pdf.set_font("OpenSans", 'B', 14)
pdf.cell(0, 10, 'Patient Medical Report', 0, 1, 'C', markdown=True)
pdf.ln(5)
# Patient Info
pdf.set_font("OpenSans", 'B', 10)
pdf.cell(0, 10, 'Patient Information', 0, 1, 'L', markdown=True)
pdf.set_font("OpenSans", '', 8)
pdf.cell(0, 3, f"Patient ID: **{patient}** - Name: **{name.split('[')[1].split(']')[0]}** Surname: **{lastname}** - Hospital admission n°: **{visit}**", 0, 1, 'L', markdown=True)
pdf.ln(5)
# Left column (Medical Scenario)
left_x = 10
right_x = 110
col_width = 90
# Right column (Recommendations)
pdf.set_xy(right_x, pdf.get_y())
pdf.set_font("OpenSans", 'B', 10)
pdf.cell(col_width - 20, 10, 'Recommendations', 0, 1, 'L')
pdf.set_xy(right_x, pdf.get_y())
pdf.set_font("OpenSans", '', 8)
for i, output in enumerate(list_output):
tensor_value = output[0].item() # Convert tensor to number
recommendation = output[1]
pdf.set_xy(right_x, pdf.get_y())
pdf.cell(col_width - 20, 3, f"Medication {i+1}: {tensor_value}, {recommendation}", 0, 1, 'L')
# Medical Scenario
pdf.set_xy(left_x, pdf.get_y() - 40)
pdf.set_font("OpenSans", 'B', 10)
pdf.cell(col_width, 10, 'Medical Scenario', 0, 1, 'L', markdown=True)
pdf.set_xy(left_x, pdf.get_y())
pdf.set_font("OpenSans", '', 8)
pdf.multi_cell(col_width, 3, medical_scenario, 0, 'L', markdown=True)
# internist_scenario
pdf.set_xy(left_x, pdf.get_y())
pdf.set_font("OpenSans", 'B', 10)
pdf.cell(0, 10, 'Internist Scenario', 0, 1, 'L', markdown=True)
pdf.set_font("OpenSans", '', 8)
pdf.multi_cell(0, 3, internist_scenario, 0, 'L', markdown=True)
pdf.ln(5)
return bytes(pdf.output()) |