Spaces:
Sleeping
Sleeping
harshj0506
commited on
Commit
•
91ed67a
1
Parent(s):
c8d2a84
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
# Load the fine-tuned model and tokenizer
|
7 |
+
model_path = "finetuned_model"
|
8 |
+
tokenizer_path = "finetuned_tokenizer"
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_path)
|
13 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(tokenizer_path)
|
14 |
+
return model, tokenizer
|
15 |
+
|
16 |
+
model, tokenizer = load_model()
|
17 |
+
|
18 |
+
def predict_sentiment(text):
|
19 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
tokenized = tokenizer(text, truncation=True, padding=True, return_tensors='pt').to(device)
|
23 |
+
outputs = model(**tokenized)
|
24 |
+
|
25 |
+
probs = F.softmax(outputs.logits, dim=-1)
|
26 |
+
preds = torch.argmax(outputs.logits, dim=-1).item()
|
27 |
+
probs_max = probs.max().detach().cpu().numpy()
|
28 |
+
|
29 |
+
prediction = "Positive" if preds == 1 else "Negative"
|
30 |
+
return prediction, probs_max * 100
|
31 |
+
|
32 |
+
st.title("Sentiment Analysis App")
|
33 |
+
text = st.text_area("Enter your text:")
|
34 |
+
|
35 |
+
if st.button("Predict Sentiment"):
|
36 |
+
if text:
|
37 |
+
sentiment, confidence = predict_sentiment(text)
|
38 |
+
st.write(f"Sentiment: {sentiment}")
|
39 |
+
st.write(f"Confidence: {confidence:.2f}%")
|
40 |
+
else:
|
41 |
+
st.write("Please enter some text.")
|