File size: 1,236 Bytes
00f8748 33e3fdb 00f8748 33e3fdb 00f8748 33e3fdb 00f8748 33e3fdb 00f8748 33e3fdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from PIL import Image
from processing import process_image, generate_embeddings , recognize_faces
def driver(image,zip_file):
image.save('class_attendance.jpg')
fig = process_image('class_attendance.jpg')
generate_embeddings(zip_file)
recognize_faces("embeddings.pkl")
file_name = "Attendance.txt"
image_detected = Image.open('image_detected.jpg')
image_grid = Image.open('image_grid.jpg')
return file_name,image_detected,image_grid
# Define the Gradio interface
# Read the content of the .md file
with open("description.md", "r") as file:
description_text = file.read()
demo = gr.Interface(
fn=driver,
inputs=[gr.Image(label="Upload the image of group/class",type="pil"),gr.File(label="Upload ZIP file containing images of students/employees")],
outputs=[gr.File(label="Download Attendance File"),gr.Image(label="Image with face detections"),"image"],
title="Automated Attendance System",
description=description_text,
examples=[["abc1.jpg","friends.zip"],["abc2.jpg","friends.zip"]],
article="<b>if you find any unexpected or wrong results please flag them so that we can improve our model for those type of inputs.<b>"
)
demo.launch(inline=False) |