pranit144 commited on
Commit
faabc58
·
verified ·
1 Parent(s): b2b276e

Upload 6 files

Browse files
Pune_House_Data.csv ADDED
The diff for this file is too large to render. See raw diff
 
house_price_prediction.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6e2721d391e104205147cc460696129945f86a7753ae10e46d2bbaa8e8825b6
3
+ size 6897
house_price_prediction_v2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a49705f5f9bae4cd6782b9bd8fa985705c95a774e62dbbdf0f87dd2e191f4fb
3
+ size 84721402
main.py ADDED
@@ -0,0 +1,1116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, jsonify
2
+ import google.generativeai as genai
3
+ import pandas as pd
4
+ import numpy as np
5
+ import joblib
6
+ import os
7
+ import json
8
+ from datetime import datetime
9
+ import re
10
+ from typing import Dict, List, Any, Optional
11
+ import logging
12
+ from sklearn.model_selection import train_test_split
13
+ from sklearn.ensemble import RandomForestRegressor
14
+ from sklearn.preprocessing import StandardScaler
15
+ from sklearn.pipeline import Pipeline
16
+ from sklearn.metrics import mean_absolute_error, r2_score
17
+ import sklearn # Import sklearn to get version
18
+
19
+ app = Flask(__name__)
20
+
21
+ # Configure logging
22
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
23
+ logger = logging.getLogger(__name__)
24
+
25
+ # Configure Gemini API
26
+ GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyAU8NFxxscrLcPcYqp5bnnyBPTVH0v1aZY') # IMPORTANT: Replace with a secure way to manage API keys
27
+ genai.configure(api_key=GEMINI_API_KEY)
28
+ # Using gemini-1.5-flash for potentially larger context window and better performance
29
+ model = genai.GenerativeModel('gemini-2.0-flash')
30
+
31
+
32
+ class EnhancedRealEstateSalesAssistant:
33
+ def __init__(self):
34
+ self.pipeline = None # Initialize pipeline to None
35
+ self.training_feature_names = [] # To store feature names from training
36
+ self.model_version = 'N/A'
37
+ self.load_model_and_data()
38
+ self.conversation_history = []
39
+ self.client_preferences = {}
40
+ self.last_search_results = None
41
+ self.context_memory = []
42
+
43
+ def _clean_gemini_text(self, text: str) -> str:
44
+ """Removes common Markdown formatting characters (like asterisks, hashes) from Gemini's output."""
45
+ if not isinstance(text, str):
46
+ return text # Return as is if not a string
47
+
48
+ # Remove bold/italic markers (**)
49
+ cleaned_text = re.sub(r'\*\*', '', text)
50
+ # Remove italic markers (*)
51
+ cleaned_text = re.sub(r'\*', '', cleaned_text)
52
+ # Remove header markers (#) at the start of a line, and any following whitespace
53
+ cleaned_text = re.sub(r'^\s*#+\s*', '', cleaned_text, flags=re.MULTILINE)
54
+ # Remove typical list bullet points like '- ' or '+ ' or '* ' at the start of a line
55
+ # (Note: '*' removal above might catch list items, this is for redundancy/clarity)
56
+ cleaned_text = re.sub(r'^\s*[-+]\s+', '', cleaned_text, flags=re.MULTILINE)
57
+ # Replace multiple newlines with a single one (or two, depending on desired paragraph spacing)
58
+ cleaned_text = re.sub(r'\n\s*\n', '\n\n', cleaned_text)
59
+ # Remove excessive leading/trailing whitespace from each line
60
+ cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines()])
61
+ # Final strip for the whole block
62
+ cleaned_text = cleaned_text.strip()
63
+ return cleaned_text
64
+
65
+ def load_model_and_data(self):
66
+ """Load the trained model and dataset with version compatibility"""
67
+ try:
68
+ # Load the dataset first
69
+ self.df = pd.read_csv('Pune_House_Data.csv')
70
+
71
+ # Clean and process data
72
+ self.df = self.clean_dataset()
73
+
74
+ # Extract unique values for filtering
75
+ self.locations = sorted(self.df['site_location'].unique().tolist())
76
+ self.area_types = sorted(self.df['area_type'].unique().tolist())
77
+ self.availability_types = sorted(self.df['availability'].unique().tolist())
78
+ self.bhk_options = sorted(self.df['bhk'].unique().tolist())
79
+
80
+ # Try to load model with version compatibility
81
+ model_loaded = self.load_model_with_version_check()
82
+
83
+ if not model_loaded:
84
+ logger.warning("Model loading failed, prediction will use fallback method.")
85
+ self.pipeline = None # Ensure pipeline is None if loading failed
86
+
87
+ logger.info("✅ Model and data loading process completed.")
88
+ logger.info(f"Dataset shape: {self.df.shape}")
89
+ logger.info(f"Available locations: {len(self.locations)}")
90
+
91
+ except Exception as e:
92
+ logger.error(f"❌ Critical error loading model/data: {e}")
93
+ # Create fallback data
94
+ self.df = self.create_fallback_data()
95
+ self.locations = ['Baner', 'Hadapsar', 'Kothrud', 'Viman Nagar', 'Wakad', 'Hinjewadi']
96
+ self.area_types = ['Built-up Area', 'Super built-up Area', 'Plot Area', 'Carpet Area']
97
+ self.availability_types = ['Ready To Move', 'Not Ready', 'Under Construction']
98
+ self.bhk_options = [1, 2, 3, 4, 5, 6]
99
+ self.pipeline = None # Ensure pipeline is None if data loading failed
100
+
101
+ def load_model_with_version_check(self):
102
+ """Load model with version compatibility check, or retrain if necessary."""
103
+ try:
104
+ # First try to load the new version-compatible model
105
+ try:
106
+ model_data = joblib.load('house_price_prediction_v2.pkl')
107
+ self.pipeline = model_data['pipeline']
108
+ self.training_feature_names = model_data.get('feature_names', [])
109
+ self.model_version = model_data.get('version', '2.0')
110
+ logger.info(f"✅ Loaded model version {self.model_version} with {len(self.training_feature_names)} features.")
111
+ return True
112
+ except FileNotFoundError:
113
+ logger.info("New model version (house_price_prediction_v2.pkl) not found, attempting to retrain.")
114
+ return self.retrain_model_with_current_version()
115
+ except Exception as v2_load_error:
116
+ logger.error(f"Failed to load new model version (v2): {v2_load_error}. Attempting retraining.")
117
+ return self.retrain_model_with_current_version()
118
+
119
+ except Exception as e:
120
+ logger.error(f"Error in model loading process: {e}. Retraining will be attempted as a last resort.")
121
+ return self.retrain_model_with_current_version() # Final attempt to retrain if other loading fails
122
+
123
+ def retrain_model_with_current_version(self):
124
+ """Retrain the model with current scikit-learn version"""
125
+ try:
126
+ logger.info(f"🔄 Retraining model with scikit-learn version {sklearn.__version__}")
127
+
128
+ # Prepare features (this method also sets self.training_feature_names)
129
+ X, y = self.create_training_data_with_proper_features()
130
+
131
+ if X is None or y is None:
132
+ logger.error("Failed to create training data, cannot retrain model.")
133
+ self.pipeline = None
134
+ return False
135
+
136
+ # Split data
137
+ X_train, X_test, y_train, y_test = train_test_split(
138
+ X, y, test_size=0.2, random_state=42
139
+ )
140
+
141
+ # Create pipeline
142
+ pipeline = Pipeline([
143
+ ('scaler', StandardScaler()),
144
+ ('model', RandomForestRegressor(
145
+ n_estimators=100,
146
+ random_state=42,
147
+ n_jobs=-1 # Use all available cores
148
+ ))
149
+ ])
150
+
151
+ # Train model
152
+ logger.info("Training model...")
153
+ pipeline.fit(X_train, y_train)
154
+
155
+ # Test model
156
+ y_pred = pipeline.predict(X_test)
157
+ mae = mean_absolute_error(y_test, y_pred)
158
+ r2 = r2_score(y_test, y_pred)
159
+
160
+ logger.info(f"✅ Model trained successfully:")
161
+ logger.info(f" MAE: {mae:.2f} lakhs")
162
+ logger.info(f" R² Score: {r2:.3f}")
163
+
164
+ # Save the new model
165
+ self.pipeline = pipeline
166
+ # self.training_feature_names is already set by create_training_data_with_proper_features
167
+
168
+ model_data = {
169
+ 'pipeline': self.pipeline,
170
+ 'feature_names': self.training_feature_names,
171
+ 'version': '2.0',
172
+ 'sklearn_version': sklearn.__version__,
173
+ 'training_info': {
174
+ 'mae': mae,
175
+ 'r2_score': r2,
176
+ 'training_samples': len(X_train),
177
+ 'test_samples': len(X_test),
178
+ 'feature_count': len(self.training_feature_names)
179
+ },
180
+ 'created_at': datetime.now().isoformat()
181
+ }
182
+
183
+ # Save with version info
184
+ joblib.dump(model_data, 'house_price_prediction_v2.pkl')
185
+ logger.info("✅ Model saved as house_price_prediction_v2.pkl")
186
+
187
+ return True
188
+
189
+ except Exception as e:
190
+ logger.error(f"Error retraining model: {e}")
191
+ self.pipeline = None
192
+ return False
193
+
194
+ def create_training_data_with_proper_features(self):
195
+ """Create training data with proper feature engineering for consistent predictions"""
196
+ try:
197
+ # Prepare features for training
198
+ df_features = self.df.copy()
199
+
200
+ # Select relevant columns for training
201
+ feature_columns = ['site_location', 'area_type', 'availability', 'bhk', 'bath', 'balcony', 'total_sqft']
202
+
203
+ # Check if all required columns exist
204
+ missing_columns = [col for col in feature_columns + ['price'] if col not in df_features.columns]
205
+ if missing_columns:
206
+ logger.error(f"Missing essential columns for training: {missing_columns}")
207
+ return None, None
208
+
209
+ df_features = df_features[feature_columns + ['price']]
210
+
211
+ # Clean data (ensure numeric columns are correct, fillna where appropriate)
212
+ df_features['bhk'] = pd.to_numeric(df_features['bhk'], errors='coerce')
213
+ df_features['bath'] = pd.to_numeric(df_features['bath'], errors='coerce').fillna(df_features['bath'].median())
214
+ df_features['balcony'] = pd.to_numeric(df_features['balcony'], errors='coerce').fillna(df_features['balcony'].median())
215
+ df_features['total_sqft'] = pd.to_numeric(df_features['total_sqft'], errors='coerce')
216
+ df_features['price'] = pd.to_numeric(df_features['price'], errors='coerce')
217
+
218
+ # Remove rows with critical missing values for training
219
+ df_features = df_features.dropna(subset=['price', 'total_sqft', 'bhk', 'site_location'])
220
+
221
+ # Remove outliers before one-hot encoding for more robust training
222
+ df_features = self.remove_outliers(df_features)
223
+
224
+ # One-hot encode categorical variables
225
+ categorical_cols = ['site_location', 'area_type', 'availability']
226
+ df_encoded = pd.get_dummies(df_features, columns=categorical_cols, prefix=categorical_cols, dummy_na=False)
227
+
228
+ # Separate features and target
229
+ X = df_encoded.drop('price', axis=1)
230
+ y = df_encoded['price']
231
+
232
+ # Store feature names for later use in prediction
233
+ self.training_feature_names = X.columns.tolist()
234
+
235
+ logger.info(f"Training data prepared: {X.shape[0]} samples, {X.shape[1]} features")
236
+
237
+ return X, y
238
+
239
+ except Exception as e:
240
+ logger.error(f"Error creating training data: {e}")
241
+ return None, None
242
+
243
+ def remove_outliers(self, df):
244
+ """Remove outliers from the dataset based on price and area."""
245
+ try:
246
+ # Calculate price_per_sqft for outlier removal, then drop it if not needed as a feature
247
+ df['price_per_sqft'] = (df['price'] * 100000) / df['total_sqft']
248
+
249
+ # Remove price outliers (e.g., beyond 3 standard deviations from mean)
250
+ price_mean = df['price'].mean()
251
+ price_std = df['price'].std()
252
+ df = df[abs(df['price'] - price_mean) <= 3 * price_std]
253
+
254
+ # Remove area outliers (e.g., beyond 3 standard deviations from mean)
255
+ area_mean = df['total_sqft'].mean()
256
+ area_std = df['total_sqft'].std()
257
+ df = df[abs(df['total_sqft'] - area_mean) <= 3 * area_std]
258
+
259
+ # Remove properties with unrealistic price per sqft (e.g., <1000 or >20000 INR/sqft for Pune)
260
+ df = df[(df['price_per_sqft'] >= 1000) & (df['price_per_sqft'] <= 20000)]
261
+
262
+ # Drop temporary price_per_sqft column
263
+ df = df.drop(columns=['price_per_sqft'])
264
+
265
+ logger.info(f"Dataset after outlier removal: {len(df)} rows")
266
+ return df
267
+
268
+ except Exception as e:
269
+ logger.error(f"Error removing outliers: {e}")
270
+ return df # Return original df if error occurs
271
+
272
+ def predict_single_price(self, location, bhk, bath, balcony, sqft, area_type, availability):
273
+ """Predict price for a single property using ML model, with fallback to heuristic."""
274
+ try:
275
+ # Check if ML pipeline is loaded
276
+ if not hasattr(self, 'pipeline') or self.pipeline is None or not self.training_feature_names:
277
+ logger.warning("ML pipeline or training features not available. Using fallback prediction.")
278
+ return self.predict_single_price_fallback(location, bhk, bath, balcony, sqft, area_type, availability)
279
+
280
+ try:
281
+ # Create a feature dictionary initialized with 0s for all expected features
282
+ feature_dict = {feature: 0 for feature in self.training_feature_names}
283
+
284
+ # Set numerical features
285
+ numerical_mapping = {
286
+ 'bhk': bhk,
287
+ 'bath': bath,
288
+ 'balcony': balcony,
289
+ 'total_sqft': sqft
290
+ }
291
+ for feature, value in numerical_mapping.items():
292
+ if feature in feature_dict:
293
+ feature_dict[feature] = value
294
+ else:
295
+ logger.warning(f"Numerical feature '{feature}' not found in training features. Skipping.")
296
+
297
+ # Set categorical features (one-hot encoded)
298
+ # Location
299
+ location_key = f"site_location_{location}"
300
+ if location_key in feature_dict:
301
+ feature_dict[location_key] = 1
302
+ else:
303
+ found_loc = False
304
+ for feature in self.training_feature_names:
305
+ if feature.startswith('site_location_') and location.lower() in feature.lower():
306
+ feature_dict[feature] = 1
307
+ found_loc = True
308
+ break
309
+ if not found_loc:
310
+ logger.warning(f"Location '{location}' not found as exact or fuzzy match in training features. This location will not contribute to the ML prediction specific to its one-hot encoding.")
311
+
312
+ # Area Type
313
+ area_type_key = f"area_type_{area_type}"
314
+ if area_type_key in feature_dict:
315
+ feature_dict[area_type_key] = 1
316
+ else:
317
+ found_area_type = False
318
+ for feature in self.training_feature_names:
319
+ if feature.startswith('area_type_') and area_type.lower() in feature.lower():
320
+ feature_dict[feature] = 1
321
+ found_area_type = True
322
+ break
323
+ if not found_area_type:
324
+ logger.warning(f"Area type '{area_type}' not found in training features. This area type will not contribute to the ML prediction specific to its one-hot encoding.")
325
+
326
+ # Availability
327
+ availability_key = f"availability_{availability}"
328
+ if availability_key in feature_dict:
329
+ feature_dict[availability_key] = 1
330
+ else:
331
+ found_availability = False
332
+ for feature in self.training_feature_names:
333
+ if feature.startswith('availability_') and availability.lower() in feature.lower():
334
+ feature_dict[feature] = 1
335
+ found_availability = True
336
+ break
337
+ if not found_availability:
338
+ logger.warning(f"Availability '{availability}' not found in training features. This availability will not contribute to the ML prediction specific to its one-hot encoding.")
339
+
340
+ # Create DataFrame from the feature dictionary and ensure column order
341
+ input_df = pd.DataFrame([feature_dict])[self.training_feature_names]
342
+
343
+ predicted_price = self.pipeline.predict(input_df)[0]
344
+ return round(predicted_price, 2)
345
+
346
+ except Exception as ml_prediction_error:
347
+ logger.warning(f"ML prediction failed for input {location, bhk, sqft}: {ml_prediction_error}. Falling back to heuristic model.")
348
+ return self.predict_single_price_fallback(location, bhk, bath, balcony, sqft, area_type, availability)
349
+
350
+ except Exception as general_error:
351
+ logger.error(f"General error in predict_single_price wrapper: {general_error}. Falling back to heuristic.")
352
+ return self.predict_single_price_fallback(location, bhk, bath, balcony, sqft, area_type, availability)
353
+
354
+
355
+ def predict_single_price_fallback(self, location, bhk, bath, balcony, sqft, area_type, availability):
356
+ """Enhanced fallback prediction method when ML model is unavailable or fails."""
357
+ try:
358
+ # Base price per sqft for different areas in Pune (extensive map for better fallback)
359
+ location_price_map = {
360
+ 'Koregaon Park': 12000, 'Kalyani Nagar': 11000, 'Boat Club Road': 10500,
361
+ 'Aundh': 9500, 'Baner': 8500, 'Balewadi': 8000, 'Kothrud': 8500,
362
+ 'Viman Nagar': 7500, 'Wakad': 7000, 'Hinjewadi': 7500, 'Pune': 7000,
363
+ 'Hadapsar': 6500, 'Kharadi': 7200, 'Yerawada': 7000, 'Lohegaon': 6000,
364
+ 'Wagholi': 5500, 'Mundhwa': 7000, 'Undri': 6500, 'Kondhwa': 6000,
365
+ 'Katraj': 5800, 'Dhankawadi': 6000, 'Warje': 6500, 'Karve Nagar': 7500,
366
+ 'Bavdhan': 8000, 'Pashan': 7500, 'Sus': 7200, 'Pimpri': 6000,
367
+ 'Chinchwad': 6200, 'Akurdi': 5800, 'Nigdi': 6500, 'Bhosari': 5500,
368
+ 'Chakan': 4800, 'Talegaon': 4500, 'Alandi': 4200, 'Dehu': 4000,
369
+ 'Lonavala': 5000, 'Kamshet': 4500, 'Sinhagad Road': 6800,
370
+ 'Balaji Nagar': 5800, 'Parvati': 5500, 'Gultekdi': 5200, 'Wanowrie': 6200,
371
+ 'Shivajinagar': 9000, 'Deccan': 8500, 'Camp': 7500, 'Koregaon': 8000,
372
+ 'Sadashiv Peth': 8200, 'Shukrawar Peth': 7800, 'Kasba Peth': 7500,
373
+ 'Narayan Peth': 7200, 'Rasta Peth': 7000, 'Ganj Peth': 6800,
374
+ 'Magarpatta': 7500, 'Fursungi': 5000, 'Handewadi': 4800,
375
+ 'Mahatma Phule Peth': 6200, 'Bhavani Peth': 6000, 'Bibwewadi': 7000
376
+ }
377
+
378
+ # Get base price per sqft, try fuzzy matching if exact match not found
379
+ base_price_per_sqft = location_price_map.get(location, 6500) # Default if no match
380
+ if location not in location_price_map:
381
+ for loc_key, price in location_price_map.items():
382
+ if location.lower() in loc_key.lower() or loc_key.lower() in location.lower():
383
+ base_price_per_sqft = price
384
+ break
385
+
386
+ # Area type multiplier
387
+ area_type_multiplier = {
388
+ 'Super built-up Area': 1.0,
389
+ 'Built-up Area': 0.92, # Typically slightly less than super built-up for same listed price
390
+ 'Plot Area': 0.85, # Plot area might translate to lower built-up
391
+ 'Carpet Area': 1.08 # Carpet area is typically more expensive per sqft
392
+ }.get(area_type, 1.0)
393
+
394
+ # Availability multiplier (Under Construction/Not Ready typically cheaper)
395
+ availability_multiplier = {
396
+ 'Ready To Move': 1.0,
397
+ 'Under Construction': 0.88,
398
+ 'Not Ready': 0.82
399
+ }.get(availability, 0.95)
400
+
401
+ # BHK-based pricing adjustments (larger BHKs might have slightly lower price/sqft due to bulk)
402
+ bhk_multiplier = {
403
+ 1: 1.15, # Premium for 1BHK
404
+ 2: 1.0, # Base
405
+ 3: 0.95, # Slight economy
406
+ 4: 0.92,
407
+ 5: 0.90,
408
+ 6: 0.88
409
+ }.get(bhk, 1.0)
410
+
411
+ # Bathroom and Balcony multipliers (simple linear adjustment)
412
+ bath_multiplier = 1.0 + (bath - 2) * 0.03 # Each extra bath adds 3% to price
413
+ balcony_multiplier = 1.0 + (balcony - 1) * 0.02 # Each extra balcony adds 2% to price
414
+
415
+ # Ensure multipliers don't go negative or too low
416
+ bath_multiplier = max(0.9, bath_multiplier)
417
+ balcony_multiplier = max(0.95, balcony_multiplier)
418
+
419
+ # Calculate final estimated price
420
+ estimated_price_raw = (sqft * base_price_per_sqft *
421
+ area_type_multiplier * availability_multiplier *
422
+ bhk_multiplier * bath_multiplier * balcony_multiplier)
423
+
424
+ estimated_price_lakhs = estimated_price_raw / 100000
425
+
426
+ return round(estimated_price_lakhs, 2)
427
+
428
+ except Exception as e:
429
+ logger.error(f"Error in fallback prediction: {e}")
430
+ return None # Indicate failure
431
+
432
+ def clean_dataset(self):
433
+ """Clean and process the dataset"""
434
+ df = self.df.copy()
435
+
436
+ # Rename 'size' to 'bhk' based on previous logic (if 'size' exists)
437
+ if 'size' in df.columns and 'bhk' not in df.columns:
438
+ df['bhk'] = df['size'].str.extract(r'(\d+)').astype(float)
439
+ elif 'bhk' not in df.columns:
440
+ df['bhk'] = np.nan # Ensure bhk column exists even if 'size' is missing
441
+
442
+ # Clean total_sqft column
443
+ df['total_sqft'] = pd.to_numeric(df['total_sqft'], errors='coerce')
444
+
445
+ # Clean price column
446
+ df['price'] = pd.to_numeric(df['price'], errors='coerce')
447
+
448
+ # Fill missing values for numerical columns (using median for robustness)
449
+ df['bath'] = pd.to_numeric(df['bath'], errors='coerce').fillna(df['bath'].median())
450
+ df['balcony'] = pd.to_numeric(df['balcony'], errors='coerce').fillna(df['balcony'].median())
451
+
452
+ # Fill missing values for categorical columns
453
+ df['society'] = df['society'].fillna('Not Specified')
454
+ df['area_type'] = df['area_type'].fillna('Super built-up Area') # Common default
455
+ df['availability'] = df['availability'].fillna('Ready To Move') # Common default
456
+ df['site_location'] = df['site_location'].fillna('Pune') # General default
457
+
458
+ # Remove rows with critical missing values after initial cleaning
459
+ df = df.dropna(subset=['price', 'total_sqft', 'bhk', 'site_location'])
460
+
461
+ # Ensure 'bhk' is an integer (or float if decimals are possible)
462
+ df['bhk'] = df['bhk'].astype(int)
463
+ df['bath'] = df['bath'].astype(int)
464
+ df['balcony'] = df['balcony'].astype(int)
465
+
466
+ logger.info(f"Dataset cleaned. Original rows: {self.df.shape[0]}, Cleaned rows: {df.shape[0]}")
467
+ return df
468
+
469
+ def create_fallback_data(self):
470
+ """Create fallback data if CSV loading fails"""
471
+ logger.warning("Creating fallback dataset due to CSV loading failure.")
472
+ fallback_data = {
473
+ 'area_type': ['Super built-up Area', 'Built-up Area', 'Carpet Area'] * 10,
474
+ 'availability': ['Ready To Move', 'Under Construction', 'Ready To Move'] * 10,
475
+ 'size': ['2 BHK', '3 BHK', '4 BHK'] * 10, # Keep 'size' for cleaning process if needed
476
+ 'society': ['Sample Society'] * 30,
477
+ 'total_sqft': [1000, 1200, 1500] * 10,
478
+ 'bath': [2, 3, 4] * 10,
479
+ 'balcony': [1, 2, 3] * 10,
480
+ 'price': [50, 75, 100] * 10,
481
+ 'site_location': ['Baner', 'Hadapsar', 'Kothrud'] * 10,
482
+ }
483
+ df_fallback = pd.DataFrame(fallback_data)
484
+ # Ensure 'bhk' is generated if 'size' is used, and other derived columns
485
+ if 'size' in df_fallback.columns:
486
+ df_fallback['bhk'] = df_fallback['size'].str.extract(r'(\d+)').astype(float)
487
+ else:
488
+ df_fallback['bhk'] = [2, 3, 4] * 10 # Direct bhk if 'size' is not used
489
+ # Add a placeholder for price_per_sqft as it's used in analysis/outlier removal
490
+ df_fallback['price_per_sqft'] = (df_fallback['price'] * 100000) / df_fallback['total_sqft']
491
+ return df_fallback
492
+
493
+
494
+ def filter_properties(self, filters: Dict[str, Any]) -> pd.DataFrame:
495
+ """Filter properties based on user criteria"""
496
+ filtered_df = self.df.copy()
497
+
498
+ # Apply filters
499
+ if filters.get('location'):
500
+ # Use a more robust search for location, allowing partial or case-insensitive matches
501
+ search_location = filters['location'].lower()
502
+ filtered_df = filtered_df[filtered_df['site_location'].str.lower().str.contains(search_location, na=False)]
503
+
504
+ if filters.get('bhk') is not None: # Check for None explicitly as bhk can be 0
505
+ filtered_df = filtered_df[filtered_df['bhk'] == filters['bhk']]
506
+
507
+ if filters.get('min_price'):
508
+ filtered_df = filtered_df[filtered_df['price'] >= filters['min_price']]
509
+
510
+ if filters.get('max_price'):
511
+ filtered_df = filtered_df[filtered_df['price'] <= filters['max_price']]
512
+
513
+ if filters.get('min_area'):
514
+ filtered_df = filtered_df[filtered_df['total_sqft'] >= filters['min_area']]
515
+
516
+ if filters.get('max_area'):
517
+ filtered_df = filtered_df[filtered_df['total_sqft'] <= filters['max_area']]
518
+
519
+ if filters.get('area_type'):
520
+ search_area_type = filters['area_type'].lower()
521
+ filtered_df = filtered_df[filtered_df['area_type'].str.lower().str.contains(search_area_type, na=False)]
522
+
523
+ if filters.get('availability'):
524
+ search_availability = filters['availability'].lower()
525
+ filtered_df = filtered_df[filtered_df['availability'].str.lower().str.contains(search_availability, na=False)]
526
+
527
+ return filtered_df.head(20) # Limit results for display
528
+
529
+ def get_price_range_analysis(self, filtered_df: pd.DataFrame) -> Dict[str, Any]:
530
+ """Analyze price range and provide insights"""
531
+ if filtered_df.empty:
532
+ return {
533
+ "total_properties": 0,
534
+ "price_range": {"min": 0.0, "max": 0.0, "avg": 0.0, "median": 0.0},
535
+ "area_range": {"min": 0.0, "max": 0.0, "avg": 0.0},
536
+ "price_per_sqft": {"min": 0.0, "max": 0.0, "avg": 0.0},
537
+ "location_distribution": {},
538
+ "area_type_distribution": {},
539
+ "availability_distribution": {}
540
+ }
541
+
542
+ analysis = {
543
+ "total_properties": len(filtered_df),
544
+ "price_range": {
545
+ "min": float(filtered_df['price'].min()),
546
+ "max": float(filtered_df['price'].max()),
547
+ "avg": float(filtered_df['price'].mean()),
548
+ "median": float(filtered_df['price'].median())
549
+ },
550
+ "area_range": {
551
+ "min": float(filtered_df['total_sqft'].min()),
552
+ "max": float(filtered_df['total_sqft'].max()),
553
+ "avg": float(filtered_df['total_sqft'].mean())
554
+ },
555
+ # Recalculate price_per_sqft for analysis as it might be dropped after outlier removal
556
+ "price_per_sqft": {
557
+ "min": float(((filtered_df['price'] * 100000) / filtered_df['total_sqft']).min()),
558
+ "max": float(((filtered_df['price'] * 100000) / filtered_df['total_sqft']).max()),
559
+ "avg": float(((filtered_df['price'] * 100000) / filtered_df['total_sqft']).mean())
560
+ },
561
+ "location_distribution": filtered_df['site_location'].value_counts().to_dict(),
562
+ "area_type_distribution": filtered_df['area_type'].value_counts().to_dict(),
563
+ "availability_distribution": filtered_df['availability'].value_counts().to_dict()
564
+ }
565
+
566
+ return analysis
567
+
568
+ def predict_prices_for_filtered_results(self, filtered_df: pd.DataFrame) -> pd.DataFrame:
569
+ """Predict prices for all filtered properties and add to DataFrame."""
570
+ if filtered_df.empty:
571
+ return filtered_df
572
+
573
+ predictions = []
574
+ for index, row in filtered_df.iterrows():
575
+ predicted_price = self.predict_single_price(
576
+ location=row['site_location'],
577
+ bhk=row['bhk'],
578
+ bath=row['bath'],
579
+ balcony=row['balcony'],
580
+ sqft=row['total_sqft'],
581
+ area_type=row['area_type'],
582
+ availability=row['availability']
583
+ )
584
+ # Use original price if prediction fails (returns None)
585
+ predictions.append(predicted_price if predicted_price is not None else row['price'])
586
+
587
+ filtered_df['predicted_price'] = predictions
588
+ filtered_df['price_difference'] = filtered_df['predicted_price'] - filtered_df['price']
589
+ # Avoid division by zero if original price is 0
590
+ filtered_df['price_difference_pct'] = (
591
+ filtered_df['price_difference'] / filtered_df['price'].replace(0, np.nan) * 100
592
+ ).fillna(0) # Fill NaN with 0 if original price was 0 or prediction failed
593
+
594
+ return filtered_df
595
+
596
+ def generate_deep_insights(self, filtered_df: pd.DataFrame, analysis: Dict[str, Any]) -> str:
597
+ """Generate deep insights using Gemini AI"""
598
+ try:
599
+ # Prepare context for Gemini
600
+ properties_sample_str = filtered_df[['site_location', 'bhk', 'total_sqft', 'price', 'predicted_price', 'price_difference_pct']].head().to_string(index=False)
601
+ if properties_sample_str:
602
+ properties_sample_str = f"Top 5 Properties Sample:\n{properties_sample_str}\n"
603
+ else:
604
+ properties_sample_str = "No specific property samples available to list."
605
+
606
+
607
+ context = f"""
608
+ You are a highly experienced real estate market expert specializing in Pune properties.
609
+ Your task is to analyze the provided property data and offer comprehensive, actionable insights for a potential property buyer.
610
+
611
+ Here's a summary of the current search results:
612
+ - Total Properties Found: {analysis['total_properties']}
613
+ - Price Range: ₹{analysis['price_range']['min']:.2f}L to ₹{analysis['price_range']['max']:.2f}L
614
+ - Average Price: ₹{analysis['price_range']['avg']:.2f}L
615
+ - Median Price: ₹{analysis['price_range']['median']:.2f}L
616
+ - Average Area: {analysis['area_range']['avg']:.0f} sq ft
617
+ - Average Price per sq ft: ₹{analysis['price_per_sqft']['avg']:.0f}
618
+
619
+ Location Distribution: {json.dumps(analysis['location_distribution'], indent=2)}
620
+ Area Type Distribution: {json.dumps(analysis['area_type_distribution'], indent=2)}
621
+ Availability Distribution: {json.dumps(analysis['availability_distribution'], indent=2)}
622
+
623
+ {properties_sample_str}
624
+
625
+ Please provide detailed market insights including:
626
+ 1. **Current Market Trends**: What are the prevailing trends in Pune's real estate market based on this data? (e.g., buyer's/seller's market, growth areas, demand patterns).
627
+ 2. **Price Competitiveness**: How do the prices of these properties compare to the overall Pune market? Are they underpriced, overpriced, or fair value? Highlight any anomalies based on the 'price_difference_pct' if available.
628
+ 3. **Best Value Propositions**: Identify what types of properties (BHK, area, location) offer the best value for money right now based on average price per sqft and price ranges.
629
+ 4. **Location-Specific Insights**: For the top 2-3 locations, provide specific observations on amenities, connectivity, future development potential, and why they might be good/bad for investment or living.
630
+ 5. **Investment Recommendations**: Based on the data, what would be your general investment advice for someone looking into Pune real estate?
631
+ 6. **Future Market Outlook**: Briefly discuss the short-to-medium term outlook (next 1-2 years) for the Pune real estate market.
632
+
633
+ Ensure your response is conversational, professional, and directly actionable for a property buyer.
634
+ """
635
+
636
+ response = model.generate_content(context)
637
+ return self._clean_gemini_text(response.text) # Apply cleaning here
638
+
639
+ except Exception as e:
640
+ logger.error(f"Error generating insights using Gemini: {e}")
641
+ return "I'm analyzing the market data to provide you with detailed insights. Based on the current search results, I can see various opportunities in your preferred areas. Please bear with me while I gather more information."
642
+
643
+ def get_nearby_properties_gemini(self, location: str, requirements: Dict[str, Any]) -> str:
644
+ """Get nearby properties and recent market data using Gemini"""
645
+ try:
646
+ # Refine requirements to be more human-readable for Gemini
647
+ req_str = ""
648
+ for k, v in requirements.items():
649
+ if k == 'min_price': req_str += f"Minimum Budget: {v} Lakhs. "
650
+ elif k == 'max_price': req_str += f"Maximum Budget: {v} Lakhs. "
651
+ elif k == 'min_area': req_str += f"Minimum Area: {v} sq ft. "
652
+ elif k == 'max_area': req_str += f"Maximum Area: {v} sq ft. "
653
+ elif k == 'bhk': req_str += f"BHK: {v}. "
654
+ elif k == 'area_type': req_str += f"Area Type: {v}. "
655
+ elif k == 'availability': req_str += f"Availability: {v}. "
656
+ elif k == 'location': req_str += f"Preferred Location: {v}. "
657
+ if not req_str: req_str = "No specific requirements provided beyond location."
658
+
659
+
660
+ context = f"""
661
+ You are a knowledgeable real estate advisor with up-to-date market information for Pune.
662
+
663
+ A client is interested in properties near **{location}**.
664
+ Their current general requirements are: {req_str.strip()}
665
+
666
+ Please provide a concise but informative overview focusing on:
667
+ 1. **Recent Property Launches**: Mention any significant residential projects launched in {location} or very close vicinity in the last 6-12 months.
668
+ 2. **Upcoming Projects**: Are there any major upcoming residential or commercial developments (e.g., IT parks, malls, new infrastructure) that could impact property values in {location} or adjacent areas?
669
+ 3. **Infrastructure Developments**: Discuss any planned or ongoing infrastructure improvements (roads, metro, civic amenities) that might affect property values and lifestyle in {location}.
670
+ 4. **Market Trends in {location}**: What are the current buying/rental trends specific to {location}? Is it a high-demand area, or is supply outpacing demand?
671
+ 5. **Comparative Analysis**: Briefly compare {location} with one or two similar, nearby localities in terms of property values, amenities, and lifestyle.
672
+ 6. **Investment Potential**: What is the general investment outlook and potential rental yield for properties in {location}?
673
+
674
+ Focus on specific details relevant to the Pune real estate market in 2024-2025.
675
+ """
676
+
677
+ response = model.generate_content(context)
678
+ return self._clean_gemini_text(response.text) # Apply cleaning here
679
+
680
+ except Exception as e:
681
+ logger.error(f"Error getting nearby properties from Gemini: {e}")
682
+ return f"I'm gathering information about recent properties and market trends near {location}. This area has shown consistent growth in property values, and I'll get you more specific details shortly."
683
+
684
+ def update_context_memory(self, user_query: str, results: Dict[str, Any]):
685
+ """Update context memory to maintain conversation continuity"""
686
+ self.context_memory.append({
687
+ 'timestamp': datetime.now().isoformat(),
688
+ 'user_query': user_query,
689
+ 'results_summary': {
690
+ 'total_properties': results.get('total_properties', 0),
691
+ 'price_range': results.get('price_range', {}),
692
+ 'locations': list(results.get('location_distribution', {}).keys())
693
+ }
694
+ })
695
+
696
+ # Keep only last 5 interactions
697
+ if len(self.context_memory) > 5:
698
+ self.context_memory.pop(0)
699
+
700
+ def extract_requirements(self, user_message: str) -> Dict[str, Any]:
701
+ """Extract property requirements from user message"""
702
+ requirements = {}
703
+ message_lower = user_message.lower()
704
+
705
+ # Extract BHK
706
+ bhk_match = re.search(r'(\d+)\s*bhk', message_lower)
707
+ if bhk_match:
708
+ try:
709
+ requirements['bhk'] = int(bhk_match.group(1))
710
+ except ValueError:
711
+ pass # Ignore if not a valid number
712
+
713
+ # Extract budget range (flexible with "lakh", "crore", "million")
714
+ budget_match = re.search(
715
+ r'(?:budget|price|cost)(?:.*?(?:of|between|from)\s*)?'
716
+ r'(\d+(?:\.\d+)?)\s*(?:lakhs?|crores?|million)?(?:(?:\s*to|\s*-\s*)\s*(\d+(?:\.\d+)?)\s*(?:lakhs?|crores?|million)?)?',
717
+ message_lower
718
+ )
719
+ if budget_match:
720
+ try:
721
+ min_amount = float(budget_match.group(1))
722
+ max_amount = float(budget_match.group(2)) if budget_match.group(2) else None
723
+
724
+ # Detect units for both min and max if provided
725
+ if 'crore' in budget_match.group(0): # Check original matched string for "crore"
726
+ requirements['min_price'] = min_amount * 100
727
+ if max_amount:
728
+ requirements['max_price'] = max_amount * 100
729
+ elif 'million' in budget_match.group(0):
730
+ requirements['min_price'] = min_amount * 10
731
+ if max_amount:
732
+ requirements['max_price'] = max_amount * 10
733
+ else: # Default to lakhs
734
+ requirements['min_price'] = min_amount
735
+ if max_amount:
736
+ requirements['max_price'] = max_amount
737
+ except ValueError:
738
+ pass
739
+
740
+ # Extract location
741
+ found_location = False
742
+ for location in self.locations:
743
+ if location.lower() in message_lower:
744
+ requirements['location'] = location
745
+ found_location = True
746
+ break
747
+ # Broader location matching if specific location not found
748
+ if not found_location:
749
+ general_locations = ['pune', 'pcmp'] # Add more general terms if needed
750
+ for gen_loc in general_locations:
751
+ if gen_loc in message_lower:
752
+ requirements['location'] = gen_loc.capitalize() # Or a default location like 'Pune'
753
+ break
754
+
755
+
756
+ # Extract area requirements
757
+ area_match = re.search(r'(\d+(?:\.\d+)?)\s*(?:to|-)?\s*(\d+(?:\.\d+)?)?\s*(?:sq\s*ft|sqft|square\s*feet|sft)',
758
+ message_lower)
759
+ if area_match:
760
+ try:
761
+ requirements['min_area'] = float(area_match.group(1))
762
+ if area_match.group(2):
763
+ requirements['max_area'] = float(area_match.group(2))
764
+ except ValueError:
765
+ pass
766
+
767
+ # Extract area type
768
+ for area_type in self.area_types:
769
+ if area_type.lower() in message_lower:
770
+ requirements['area_type'] = area_type
771
+ break
772
+
773
+ # Extract availability
774
+ for availability in self.availability_types:
775
+ if availability.lower() in message_lower:
776
+ requirements['availability'] = availability
777
+ break
778
+
779
+ return requirements
780
+
781
+ def handle_query(self, user_message: str) -> Dict[str, Any]:
782
+ """Main function to handle user queries with context awareness"""
783
+ try:
784
+ # Extract requirements from current message
785
+ requirements = self.extract_requirements(user_message)
786
+
787
+ # Merge with previous context if building on last query
788
+ if self.is_follow_up_query(user_message):
789
+ requirements = self.merge_with_context(requirements)
790
+
791
+ # Update client preferences (store all extracted preferences)
792
+ self.client_preferences.update(requirements)
793
+
794
+ # Filter properties based on requirements
795
+ filtered_df = self.filter_properties(requirements)
796
+
797
+ # If no properties found, provide suggestions
798
+ if filtered_df.empty:
799
+ return self.handle_no_results(requirements)
800
+
801
+ # Predict prices for filtered results
802
+ filtered_df = self.predict_prices_for_filtered_results(filtered_df)
803
+
804
+ # Get price range analysis
805
+ analysis = self.get_price_range_analysis(filtered_df)
806
+
807
+ # Generate deep insights
808
+ insights = self.generate_deep_insights(filtered_df, analysis)
809
+
810
+ # Get nearby properties information
811
+ nearby_info = ""
812
+ if requirements.get('location'):
813
+ nearby_info = self.get_nearby_properties_gemini(requirements['location'], requirements)
814
+
815
+ # Prepare response
816
+ response_data = {
817
+ 'filtered_properties': filtered_df.to_dict('records'),
818
+ 'analysis': analysis,
819
+ 'insights': insights,
820
+ 'nearby_properties': nearby_info,
821
+ 'requirements': requirements,
822
+ 'context_aware': self.is_follow_up_query(user_message)
823
+ }
824
+
825
+ # Update context memory
826
+ self.update_context_memory(user_message, analysis)
827
+ self.last_search_results = response_data # Store the full response
828
+
829
+ return response_data
830
+
831
+ except Exception as e:
832
+ logger.error(f"Error handling query: {e}")
833
+ return {'error': f'An error occurred while processing your query: {str(e)}'}
834
+
835
+ def is_follow_up_query(self, user_message: str) -> bool:
836
+ """Check if this is a follow-up query building on previous results"""
837
+ follow_up_indicators = ['also', 'and', 'additionally', 'what about', 'show me more', 'similar', 'nearby',
838
+ 'around', 'close to', 'next', 'other', 'different', 'change', 'update']
839
+ return any(indicator in user_message.lower() for indicator in follow_up_indicators) and len(
840
+ self.context_memory) > 0
841
+
842
+ def merge_with_context(self, new_requirements: Dict[str, Any]) -> Dict[str, Any]:
843
+ """Merge new requirements with context from previous queries"""
844
+ # Start with the overall client preferences
845
+ merged = self.client_preferences.copy()
846
+
847
+ # Overwrite with any new requirements from the current message
848
+ merged.update(new_requirements)
849
+
850
+ # Apply default or previously established values if not specified in current query
851
+ # Example: If a new query doesn't specify location, use the last known location
852
+ if 'location' not in new_requirements and 'location' in self.client_preferences:
853
+ merged['location'] = self.client_preferences['location']
854
+
855
+ # You can add more sophisticated merging logic here if needed
856
+ # e.g., if a new budget is provided, replace the old one entirely.
857
+ # The current update() method already handles this for direct key conflicts.
858
+
859
+ return merged
860
+
861
+ def handle_no_results(self, requirements: Dict[str, Any]) -> Dict[str, Any]:
862
+ """Handle cases where no properties match the criteria"""
863
+ suggestions = ["Try relaxing some of your criteria."]
864
+
865
+ if requirements.get('max_price'):
866
+ suggestions.append(f"Consider increasing your budget above ₹{requirements['max_price']:.2f}L.")
867
+ # Suggest a slightly higher range
868
+ suggestions.append(f"Perhaps a range of ₹{requirements['max_price']:.2f}L to ₹{(requirements['max_price'] * 1.2):.2f}L?")
869
+
870
+ if requirements.get('location'):
871
+ # Find nearby popular locations in the dataset, excluding the one searched
872
+ nearby_locs = [loc for loc in self.locations if loc.lower() != requirements['location'].lower()]
873
+ if nearby_locs:
874
+ # Sort by count if possible, or just pick top 3
875
+ top_locations = self.df['site_location'].value_counts().index.tolist()
876
+ suggested_nearby = [loc for loc in top_locations if loc.lower() != requirements['location'].lower()][:3]
877
+ if suggested_nearby:
878
+ suggestions.append(f"Consider nearby popular areas like: {', '.join(suggested_nearby)}.")
879
+
880
+ if requirements.get('bhk') is not None:
881
+ # Suggest +/- 1 BHK if not already at min/max reasonable bhk
882
+ if requirements['bhk'] > 1:
883
+ suggestions.append(f"Consider looking for {requirements['bhk'] - 1} BHK options.")
884
+ if requirements['bhk'] < 6: # Assuming 6 is a practical upper limit for most searches
885
+ suggestions.append(f"Consider {requirements['bhk'] + 1} BHK options.")
886
+
887
+ if requirements.get('max_area'):
888
+ suggestions.append(f"You might find more options if you consider properties up to ~{(requirements['max_area'] * 1.1):.0f} sq ft.")
889
+
890
+ # Default message if specific suggestions are not generated
891
+ if len(suggestions) == 1 and "relaxing" in suggestions[0]:
892
+ final_suggestion_text = "No properties found matching your exact criteria. Please try broadening your search or clarifying your preferences."
893
+ else:
894
+ final_suggestion_text = f"No properties found matching your exact criteria. Here are some suggestions: {'; '.join(suggestions)}."
895
+
896
+ return {
897
+ 'filtered_properties': [],
898
+ 'analysis': self.get_price_range_analysis(pd.DataFrame()), # Empty analysis
899
+ 'insights': final_suggestion_text,
900
+ 'nearby_properties': '',
901
+ 'requirements': requirements,
902
+ 'suggestions': suggestions
903
+ }
904
+
905
+
906
+ # Initialize the enhanced sales assistant (MUST be after class definition)
907
+ sales_assistant = EnhancedRealEstateSalesAssistant()
908
+
909
+
910
+ @app.route('/')
911
+ def index():
912
+ return render_template('index2.html')
913
+
914
+
915
+ @app.route('/chat', methods=['POST'])
916
+ def chat():
917
+ """Enhanced chat endpoint with comprehensive property search"""
918
+ try:
919
+ data = request.get_json()
920
+ user_message = data.get('message', '').strip()
921
+
922
+ if not user_message:
923
+ return jsonify({'error': 'Please provide your query'}), 400
924
+
925
+ # Get comprehensive response from sales assistant
926
+ response_data = sales_assistant.handle_query(user_message)
927
+
928
+ # Ensure response_data always includes necessary keys even on error
929
+ if 'error' in response_data:
930
+ return jsonify({
931
+ 'response': response_data,
932
+ 'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
933
+ 'conversation_context': len(sales_assistant.context_memory)
934
+ }), 500 # Return 500 for internal errors
935
+ else:
936
+ return jsonify({
937
+ 'response': response_data,
938
+ 'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
939
+ 'conversation_context': len(sales_assistant.context_memory)
940
+ })
941
+
942
+ except Exception as e:
943
+ logger.error(f"Chat endpoint error: {e}")
944
+ return jsonify({'error': f'An unexpected error occurred in chat endpoint: {str(e)}'}), 500
945
+
946
+
947
+ # Flask routes must be defined at the module level, not inside a class
948
+ @app.route('/model_status')
949
+ def model_status():
950
+ """Get current model status and version info"""
951
+ try:
952
+ status = {
953
+ 'model_loaded': hasattr(sales_assistant, 'pipeline') and sales_assistant.pipeline is not None,
954
+ 'model_version': getattr(sales_assistant, 'model_version', 'unknown'),
955
+ 'feature_count': len(getattr(sales_assistant, 'training_feature_names', [])),
956
+ 'prediction_method': 'ML' if hasattr(sales_assistant, 'pipeline') and sales_assistant.pipeline else 'Fallback',
957
+ 'sklearn_version': sklearn.__version__
958
+ }
959
+ return jsonify(status)
960
+ except Exception as e:
961
+ logger.error(f"Error in model_status endpoint: {e}")
962
+ return jsonify({'error': str(e)}), 500
963
+
964
+ @app.route('/retrain_model', methods=['POST'])
965
+ def retrain_model():
966
+ """Retrain the model with current version"""
967
+ try:
968
+ logger.info("Starting model retraining via endpoint...")
969
+ success = sales_assistant.retrain_model_with_current_version()
970
+
971
+ if success:
972
+ return jsonify({
973
+ 'message': 'Model retrained successfully',
974
+ 'version': sales_assistant.model_version,
975
+ 'feature_count': len(sales_assistant.training_feature_names),
976
+ 'sample_features': sales_assistant.training_feature_names[:10] if sales_assistant.training_feature_names else []
977
+ })
978
+ else:
979
+ return jsonify({'error': 'Failed to retrain model. Check logs for details.'}), 500
980
+
981
+ except Exception as e:
982
+ logger.error(f"Retrain endpoint error: {e}")
983
+ return jsonify({'error': f'An unexpected error occurred during retraining: {str(e)}'}), 500
984
+
985
+
986
+ @app.route('/filter_properties', methods=['POST'])
987
+ def filter_properties_endpoint(): # Renamed to avoid conflict with class method
988
+ """Dedicated endpoint for property filtering"""
989
+ try:
990
+ filters = request.get_json()
991
+
992
+ filtered_df = sales_assistant.filter_properties(filters)
993
+ filtered_df = sales_assistant.predict_prices_for_filtered_results(filtered_df)
994
+ analysis = sales_assistant.get_price_range_analysis(filtered_df)
995
+
996
+ return jsonify({
997
+ 'properties': filtered_df.to_dict('records'),
998
+ 'analysis': analysis,
999
+ 'total_count': len(filtered_df)
1000
+ })
1001
+
1002
+ except Exception as e:
1003
+ logger.error(f"Filter endpoint error: {e}")
1004
+ return jsonify({'error': f'Filtering error: {str(e)}'}), 500
1005
+
1006
+
1007
+ @app.route('/get_insights', methods=['POST'])
1008
+ def get_insights():
1009
+ """Get AI-powered insights for current search results"""
1010
+ try:
1011
+ data = request.get_json()
1012
+ location_from_request = data.get('location')
1013
+ requirements_from_request = data.get('requirements', {})
1014
+
1015
+ if sales_assistant.last_search_results:
1016
+ filtered_df = pd.DataFrame(sales_assistant.last_search_results['filtered_properties'])
1017
+ analysis = sales_assistant.last_search_results['analysis']
1018
+ insights = sales_assistant.generate_deep_insights(filtered_df, analysis)
1019
+
1020
+ nearby_info = ""
1021
+ # Use location from request if provided, otherwise from last search results
1022
+ effective_location = location_from_request or sales_assistant.last_search_results['requirements'].get('location')
1023
+ if effective_location:
1024
+ nearby_info = sales_assistant.get_nearby_properties_gemini(effective_location, requirements_from_request or sales_assistant.last_search_results['requirements'])
1025
+
1026
+ return jsonify({
1027
+ 'insights': insights,
1028
+ 'nearby_properties': nearby_info
1029
+ })
1030
+ else:
1031
+ return jsonify({'error': 'No previous search results available for insights. Please perform a search first.'}), 400
1032
+
1033
+ except Exception as e:
1034
+ logger.error(f"Insights endpoint error: {e}")
1035
+ return jsonify({'error': f'Insights error: {str(e)}'}), 500
1036
+
1037
+
1038
+ @app.route('/get_market_data')
1039
+ def get_market_data():
1040
+ """Get comprehensive market data"""
1041
+ try:
1042
+ # Ensure df is loaded before accessing its properties
1043
+ if not hasattr(sales_assistant, 'df') or sales_assistant.df.empty:
1044
+ return jsonify({'error': 'Market data not available, dataset not loaded.'}), 500
1045
+
1046
+ market_data = {
1047
+ 'locations': sales_assistant.locations,
1048
+ 'area_types': sales_assistant.area_types,
1049
+ 'availability_types': sales_assistant.availability_types,
1050
+ 'bhk_options': sales_assistant.bhk_options,
1051
+ 'price_statistics': {
1052
+ 'min_price': float(sales_assistant.df['price'].min()),
1053
+ 'max_price': float(sales_assistant.df['price'].max()),
1054
+ 'avg_price': float(sales_assistant.df['price'].mean()),
1055
+ 'median_price': float(sales_assistant.df['price'].median())
1056
+ },
1057
+ 'area_statistics': {
1058
+ 'min_area': float(sales_assistant.df['total_sqft'].min()),
1059
+ 'max_area': float(sales_assistant.df['total_sqft'].max()),
1060
+ 'avg_area': float(sales_assistant.df['total_sqft'].mean())
1061
+ }
1062
+ }
1063
+
1064
+ return jsonify(market_data)
1065
+
1066
+ except Exception as e:
1067
+ logger.error(f"Market data endpoint error: {e}")
1068
+ return jsonify({'error': f'Market data error: {str(e)}'}), 500
1069
+
1070
+
1071
+ @app.route('/client_preferences')
1072
+ def get_client_preferences():
1073
+ """Get current client preferences and conversation history"""
1074
+ return jsonify({
1075
+ 'preferences': sales_assistant.client_preferences,
1076
+ 'conversation_history': sales_assistant.context_memory,
1077
+ 'last_search_available': sales_assistant.last_search_results is not None
1078
+ })
1079
+
1080
+
1081
+ @app.route('/reset_session', methods=['POST'])
1082
+ def reset_session():
1083
+ """Reset entire session including preferences and context"""
1084
+ try:
1085
+ sales_assistant.client_preferences = {}
1086
+ sales_assistant.context_memory = []
1087
+ sales_assistant.last_search_results = None
1088
+ return jsonify({'message': 'Session reset successfully'})
1089
+ except Exception as e:
1090
+ logger.error(f"Reset session error: {e}")
1091
+ return jsonify({'error': f'Failed to reset session: {str(e)}'}), 500
1092
+
1093
+
1094
+ @app.route('/health')
1095
+ def health():
1096
+ """Health check endpoint"""
1097
+ try:
1098
+ return jsonify({
1099
+ 'status': 'healthy',
1100
+ 'model_loaded': hasattr(sales_assistant, 'pipeline') and sales_assistant.pipeline is not None,
1101
+ 'model_version': sales_assistant.model_version,
1102
+ 'data_loaded': hasattr(sales_assistant, 'df') and not sales_assistant.df.empty,
1103
+ 'dataset_size': len(sales_assistant.df) if hasattr(sales_assistant, 'df') else 0,
1104
+ 'locations_available': len(sales_assistant.locations),
1105
+ 'context_memory_size': len(sales_assistant.context_memory),
1106
+ 'timestamp': datetime.now().isoformat()
1107
+ })
1108
+ except Exception as e:
1109
+ logger.error(f"Health check error: {e}")
1110
+ return jsonify({'status': 'unhealthy', 'error': str(e)}), 500
1111
+
1112
+
1113
+ if __name__ == '__main__':
1114
+ # It's better to explicitly set the host for deployment environments.
1115
+ # For development, debug=True is useful but should be False in production.
1116
+ app.run(debug=True, host='0.0.0.0', port=5000)
templates/index.html ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <title>CKD Prediction</title>
6
+ <style>
7
+ body {
8
+ font-family: Arial, sans-serif;
9
+ background-color: aquamarine;
10
+ padding: 20px;
11
+ }
12
+
13
+ .container {
14
+ width: 700px;
15
+ margin: auto;
16
+ background: #fff;
17
+ padding: 30px;
18
+ border-radius: 10px;
19
+ box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
20
+ }
21
+
22
+ h2 {
23
+ text-align: center;
24
+ color: #333;
25
+ }
26
+
27
+ .form-group {
28
+ margin-bottom: 15px;
29
+ }
30
+
31
+ label {
32
+ font-weight: bold;
33
+ display: block;
34
+ margin-bottom: 5px;
35
+ }
36
+
37
+ input, select {
38
+ width: 100%;
39
+ padding: 8px;
40
+ font-size: 14px;
41
+ }
42
+
43
+ .btn {
44
+ width: 100%;
45
+ padding: 10px;
46
+ background-color: #28a745;
47
+ border: none;
48
+ color: white;
49
+ font-size: 16px;
50
+ cursor: pointer;
51
+ border-radius: 5px;
52
+ }
53
+
54
+ .btn:hover {
55
+ background-color: #218838;
56
+
57
+
58
+ }
59
+
60
+ .result {
61
+ font-size: large;
62
+ font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif;
63
+ color: #333;
64
+ background-color: #f8f9fa;
65
+ margin-top: 20px;
66
+ font-size: 18px;
67
+ font-weight: bold;
68
+ text-align: center;
69
+ }
70
+ </style>
71
+
72
+ </head>
73
+ <body>
74
+ <div class="container">
75
+ <h2>CKD Prediction Form</h2>
76
+ <form method="post">
77
+ <!-- Age -->
78
+ <div class="form-group">
79
+ <label>Age</label>
80
+ <input type="number" name="age" min="0" max="100" placeholder="e.g., 60" required>
81
+ </div>
82
+
83
+ <!-- Blood Pressure -->
84
+ <div class="form-group">
85
+ <label>Blood Pressure (mmHg)</label>
86
+ <input type="number" name="blood_pressure" min="40" max="200" placeholder="e.g., 80" required>
87
+ </div>
88
+
89
+ <!-- Specific Gravity -->
90
+ <div class="form-group">
91
+ <label>Specific Gravity</label>
92
+ <select name="specific_gravity">
93
+ <option value="1.005">1.005</option>
94
+ <option value="1.010">1.010</option>
95
+ <option value="1.015">1.015</option>
96
+ <option value="1.020" selected>1.020</option>
97
+ <option value="1.025">1.025</option>
98
+ </select>
99
+ </div>
100
+
101
+ <!-- Albumin -->
102
+ <div class="form-group">
103
+ <label>Albumin (0–5)</label>
104
+ <input type="number" name="albumin" min="0" max="5" placeholder="e.g., 2" required>
105
+ </div>
106
+
107
+ <!-- Sugar -->
108
+ <div class="form-group">
109
+ <label>Sugar (0–5)</label>
110
+ <input type="number" name="sugar" min="0" max="5" placeholder="e.g., 1" required>
111
+ </div>
112
+
113
+ <!-- Binary Dropdowns -->
114
+ {% for field in [
115
+ ('red_blood_cells', 'Red Blood Cells (Normal=1 / Abnormal=0)'),
116
+ ('pus_cell', 'Pus Cell (Normal=1 / Abnormal=0)'),
117
+ ('pus_cell_clumps', 'Pus Cell Clumps (Yes=1 / No=0)'),
118
+ ('bacteria', 'Bacteria (Yes=1 / No=0)'),
119
+ ('hypertension', 'Hypertension (Yes=1 / No=0)'),
120
+ ('diabetes_mellitus', 'Diabetes Mellitus (Yes=1 / No=0)'),
121
+ ('coronary_artery_disease', 'Coronary Artery Disease (Yes=1 / No=0)'),
122
+ ('appetite', 'Appetite (Good=1 / Poor=0)'),
123
+ ('peda_edema', 'Pedal Edema (Yes=1 / No=0)'),
124
+ ('aanemia', 'Anaemia (Yes=1 / No=0)')
125
+ ] %}
126
+ <div class="form-group">
127
+ <label>{{ field[1] }}</label>
128
+ <select name="{{ field[0] }}">
129
+ <option value="1">Yes / Normal / Good</option>
130
+ <option value="0">No / Abnormal / Poor</option>
131
+ </select>
132
+ </div>
133
+ {% endfor %}
134
+
135
+ <!-- Numeric Inputs -->
136
+ {% for field, label, minval, maxval, placeholder in [
137
+ ('blood_glucose_random', 'Blood Glucose Random (mg/dL)', 50, 500, 150),
138
+ ('blood_urea', 'Blood Urea (mg/dL)', 5, 300, 44),
139
+ ('serum_creatinine', 'Serum Creatinine (mg/dL)', 0.5, 15, 1.2),
140
+ ('sodium', 'Sodium (mEq/L)', 120, 160, 135),
141
+ ('potassium', 'Potassium (mEq/L)', 2.5, 7.5, 4.6),
142
+ ('haemoglobin', 'Haemoglobin (g/dL)', 3, 20, 12),
143
+ ('packed_cell_volume', 'Packed Cell Volume (%)', 15, 55, 38),
144
+ ('white_blood_cell_count', 'WBC Count (cells/uL)', 3000, 25000, 8000),
145
+ ('red_blood_cell_count', 'RBC Count (millions/uL)', 2.5, 6.5, 4.5)
146
+ ] %}
147
+ <div class="form-group">
148
+ <label>{{ label }}</label>
149
+ <input type="number" name="{{ field }}" min="{{ minval }}" max="{{ maxval }}" step="any" placeholder="e.g., {{ placeholder }}" required>
150
+ </div>
151
+ {% endfor %}
152
+
153
+ <!-- Submit Button -->
154
+ <button type="submit" class="btn">Predict</button>
155
+ </form>
156
+
157
+ {% if result %}
158
+ <div class="result">{{ result }}</div>
159
+ {% endif %}
160
+ </div>
161
+ </body>
162
+ </html>
templates/index2.html ADDED
@@ -0,0 +1,920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Enhanced Real Estate Assistant - Pune Properties</title>
7
+ <style>
8
+ * {
9
+ margin: 0;
10
+ padding: 0;
11
+ box-sizing: border-box;
12
+ }
13
+
14
+ body {
15
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
16
+ background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
17
+ min-height: 100vh;
18
+ color: #333;
19
+ }
20
+
21
+ .container {
22
+ max-width: 1400px;
23
+ margin: 0 auto;
24
+ padding: 20px;
25
+ }
26
+
27
+ .header {
28
+ background: rgba(255, 255, 255, 0.95);
29
+ padding: 20px;
30
+ border-radius: 15px;
31
+ margin-bottom: 20px;
32
+ box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
33
+ }
34
+
35
+ .header h1 {
36
+ color: #2c3e50;
37
+ text-align: center;
38
+ margin-bottom: 10px;
39
+ font-size: 2.5em;
40
+ }
41
+
42
+ .header p {
43
+ text-align: center;
44
+ color: #7f8c8d;
45
+ font-size: 1.1em;
46
+ }
47
+
48
+ .main-content {
49
+ display: grid;
50
+ grid-template-columns: 1fr 1fr;
51
+ gap: 20px;
52
+ margin-bottom: 20px;
53
+ }
54
+
55
+ .chat-section {
56
+ background: rgba(255, 255, 255, 0.95);
57
+ padding: 20px;
58
+ border-radius: 15px;
59
+ box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
60
+ }
61
+
62
+ .filter-section {
63
+ background: rgba(255, 255, 255, 0.95);
64
+ padding: 20px;
65
+ border-radius: 15px;
66
+ box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
67
+ }
68
+
69
+ .section-title {
70
+ color: #2c3e50;
71
+ margin-bottom: 15px;
72
+ font-size: 1.5em;
73
+ border-bottom: 2px solid #3498db;
74
+ padding-bottom: 5px;
75
+ }
76
+
77
+ .chat-container {
78
+ height: 400px;
79
+ overflow-y: auto;
80
+ border: 1px solid #ddd;
81
+ border-radius: 10px;
82
+ padding: 15px;
83
+ margin-bottom: 15px;
84
+ background: #f8f9fa;
85
+ }
86
+
87
+ .message {
88
+ margin-bottom: 15px;
89
+ padding: 10px;
90
+ border-radius: 10px;
91
+ max-width: 80%;
92
+ }
93
+
94
+ .user-message {
95
+ background: #3498db;
96
+ color: white;
97
+ margin-left: auto;
98
+ }
99
+
100
+ .bot-message {
101
+ background: #ecf0f1;
102
+ color: #2c3e50;
103
+ }
104
+
105
+ .input-group {
106
+ display: flex;
107
+ gap: 10px;
108
+ margin-bottom: 15px;
109
+ }
110
+
111
+ .input-group input {
112
+ flex: 1;
113
+ padding: 12px;
114
+ border: 1px solid #ddd;
115
+ border-radius: 8px;
116
+ font-size: 16px;
117
+ }
118
+
119
+ .btn {
120
+ padding: 12px 24px;
121
+ border: none;
122
+ border-radius: 8px;
123
+ cursor: pointer;
124
+ font-size: 16px;
125
+ font-weight: 600;
126
+ transition: all 0.3s ease;
127
+ }
128
+
129
+ .btn-primary {
130
+ background: #3498db;
131
+ color: white;
132
+ }
133
+
134
+ .btn-primary:hover {
135
+ background: #2980b9;
136
+ transform: translateY(-2px);
137
+ }
138
+
139
+ .btn-secondary {
140
+ background: #95a5a6;
141
+ color: white;
142
+ }
143
+
144
+ .btn-secondary:hover {
145
+ background: #7f8c8d;
146
+ }
147
+
148
+ .filter-grid {
149
+ display: grid;
150
+ grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
151
+ gap: 15px;
152
+ margin-bottom: 15px;
153
+ }
154
+
155
+ .filter-group {
156
+ display: flex;
157
+ flex-direction: column;
158
+ }
159
+
160
+ .filter-group label {
161
+ margin-bottom: 5px;
162
+ font-weight: 600;
163
+ color: #2c3e50;
164
+ }
165
+
166
+ .filter-group input, .filter-group select {
167
+ padding: 8px;
168
+ border: 1px solid #ddd;
169
+ border-radius: 5px;
170
+ font-size: 14px;
171
+ }
172
+
173
+ .results-section {
174
+ background: rgba(255, 255, 255, 0.95);
175
+ padding: 20px;
176
+ border-radius: 15px;
177
+ box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
178
+ margin-bottom: 20px;
179
+ }
180
+
181
+ .tabs {
182
+ display: flex;
183
+ border-bottom: 2px solid #ddd;
184
+ margin-bottom: 20px;
185
+ }
186
+
187
+ .tab {
188
+ padding: 10px 20px;
189
+ cursor: pointer;
190
+ background: #f8f9fa;
191
+ border: none;
192
+ border-bottom: 2px solid transparent;
193
+ font-size: 16px;
194
+ font-weight: 600;
195
+ transition: all 0.3s ease;
196
+ }
197
+
198
+ .tab.active {
199
+ background: #3498db;
200
+ color: white;
201
+ border-bottom-color: #2980b9;
202
+ }
203
+
204
+ .tab-content {
205
+ display: none;
206
+ }
207
+
208
+ .tab-content.active {
209
+ display: block;
210
+ }
211
+
212
+ .properties-table {
213
+ width: 100%;
214
+ border-collapse: collapse;
215
+ margin-bottom: 20px;
216
+ background: white;
217
+ border-radius: 10px;
218
+ overflow: hidden;
219
+ box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
220
+ }
221
+
222
+ .properties-table th,
223
+ .properties-table td {
224
+ padding: 12px;
225
+ text-align: left;
226
+ border-bottom: 1px solid #eee;
227
+ }
228
+
229
+ .properties-table th {
230
+ background: #34495e;
231
+ color: white;
232
+ font-weight: 600;
233
+ }
234
+
235
+ .properties-table tr:hover {
236
+ background: #f8f9fa;
237
+ }
238
+
239
+ .price-positive {
240
+ color: #27ae60;
241
+ font-weight: 600;
242
+ }
243
+
244
+ .price-negative {
245
+ color: #e74c3c;
246
+ font-weight: 600;
247
+ }
248
+
249
+ .analysis-grid {
250
+ display: grid;
251
+ grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
252
+ gap: 15px;
253
+ margin-bottom: 20px;
254
+ }
255
+
256
+ .analysis-card {
257
+ background: #f8f9fa;
258
+ padding: 15px;
259
+ border-radius: 10px;
260
+ border-left: 4px solid #3498db;
261
+ }
262
+
263
+ .analysis-card h4 {
264
+ color: #2c3e50;
265
+ margin-bottom: 10px;
266
+ }
267
+
268
+ .analysis-card .value {
269
+ font-size: 1.5em;
270
+ font-weight: 600;
271
+ color: #3498db;
272
+ }
273
+
274
+ .insights-section {
275
+ background: #f8f9fa;
276
+ padding: 20px;
277
+ border-radius: 10px;
278
+ margin-bottom: 20px;
279
+ }
280
+
281
+ .insights-section h3 {
282
+ color: #2c3e50;
283
+ margin-bottom: 15px;
284
+ }
285
+
286
+ .insights-section p {
287
+ line-height: 1.6;
288
+ color: #34495e;
289
+ margin-bottom: 10px;
290
+ }
291
+
292
+ .loading {
293
+ text-align: center;
294
+ padding: 20px;
295
+ color: #7f8c8d;
296
+ }
297
+
298
+ .loading::after {
299
+ content: "...";
300
+ animation: dots 1.5s steps(5, end) infinite;
301
+ }
302
+
303
+ @keyframes dots {
304
+ 0%, 20% { content: "."; }
305
+ 40% { content: ".."; }
306
+ 60% { content: "..."; }
307
+ 80%, 100% { content: ""; }
308
+ }
309
+
310
+ .status-indicator {
311
+ display: inline-block;
312
+ padding: 4px 8px;
313
+ border-radius: 15px;
314
+ font-size: 12px;
315
+ font-weight: 600;
316
+ margin-left: 10px;
317
+ }
318
+
319
+ .status-connected {
320
+ background: #d4edda;
321
+ color: #155724;
322
+ }
323
+
324
+ .status-error {
325
+ background: #f8d7da;
326
+ color: #721c24;
327
+ }
328
+
329
+ .context-indicator {
330
+ background: #fff3cd;
331
+ color: #856404;
332
+ padding: 10px;
333
+ border-radius: 5px;
334
+ margin-bottom: 15px;
335
+ font-size: 14px;
336
+ }
337
+
338
+ @media (max-width: 768px) {
339
+ .main-content {
340
+ grid-template-columns: 1fr;
341
+ }
342
+
343
+ .filter-grid {
344
+ grid-template-columns: 1fr;
345
+ }
346
+
347
+ .analysis-grid {
348
+ grid-template-columns: 1fr;
349
+ }
350
+ }
351
+ </style>
352
+ </head>
353
+ <body>
354
+ <div class="container">
355
+ <div class="header">
356
+ <h1>🏠 Pune Real Estate Assistant</h1>
357
+ <span id="statusIndicator" class="status-indicator status-connected">Connected</span>
358
+ </div>
359
+ <!-- Chat Section -->
360
+ <div class="chat-section">
361
+ <h2 class="section-title">💬 Smart Property Chat</h2>
362
+ <div id="contextIndicator" class="context-indicator" style="display: none;">
363
+ Building on previous conversation...
364
+ </div>
365
+ <div id="chatContainer" class="chat-container">
366
+ <div class="message bot-message">
367
+ <strong>AI Assistant:</strong> Hello! I'm your intelligent real estate assistant. I can help you find properties, analyze market trends, and provide deep insights. Try asking me something like "Show me 2BHK properties in Baner under 60 lakhs" or "What's the price range for 3BHK in Kothrud?"
368
+ </div>
369
+ </div>
370
+ <div class="input-group">
371
+ <input type="text" id="messageInput" placeholder="Ask me about properties, prices, or market trends..." />
372
+ <button class="btn btn-primary" onclick="sendMessage()">Send</button>
373
+ </div>
374
+ <div class="input-group">
375
+ <button class="btn btn-secondary" onclick="resetSession()">Reset Session</button>
376
+ <button class="btn btn-secondary" onclick="getInsights()">Get Insights</button>
377
+ </div>
378
+ </div>
379
+
380
+
381
+ <!-- Results Section -->
382
+ <div class="results-section">
383
+ <h2 class="section-title">📊 Search Results & Analysis</h2>
384
+
385
+ <div class="tabs">
386
+ <button class="tab active" onclick="showTab('properties')">Properties</button>
387
+ <button class="tab" onclick="showTab('analysis')">Market Analysis</button>
388
+ <button class="tab" onclick="showTab('insights')">AI Insights</button>
389
+ <button class="tab" onclick="showTab('nearby')">Nearby Properties</button>
390
+ </div>
391
+
392
+ <!-- Properties Tab -->
393
+ <div id="properties" class="tab-content active">
394
+ <div id="propertiesLoading" class="loading" style="display: none;">Loading properties</div>
395
+ <div id="propertiesTable"></div>
396
+ </div>
397
+
398
+ <!-- Analysis Tab -->
399
+ <div id="analysis" class="tab-content">
400
+ <div id="analysisLoading" class="loading" style="display: none;">Analyzing market data</div>
401
+ <div id="analysisContent"></div>
402
+ </div>
403
+
404
+ <!-- Insights Tab -->
405
+ <div id="insights" class="tab-content">
406
+ <div id="insightsLoading" class="loading" style="display: none;">Generating insights</div>
407
+ <div id="insightsContent"></div>
408
+ </div>
409
+
410
+ <!-- Nearby Properties Tab -->
411
+ <div id="nearby" class="tab-content">
412
+ <div id="nearbyLoading" class="loading" style="display: none;">Finding nearby properties</div>
413
+ <div id="nearbyContent"></div>
414
+ </div>
415
+ </div>
416
+ </div>
417
+ <!-- Filter Section -->
418
+ <div class="filter-section">
419
+ <h2 class="section-title">🔍 Advanced Filters</h2>
420
+ <div class="filter-grid">
421
+ <div class="filter-group">
422
+ <label>Location</label>
423
+ <select id="locationFilter">
424
+ <option value="">All Locations</option>
425
+ </select>
426
+ </div>
427
+ <div class="filter-group">
428
+ <label>BHK</label>
429
+ <select id="bhkFilter">
430
+ <option value="">Any BHK</option>
431
+ <option value="1">1 BHK</option>
432
+ <option value="2">2 BHK</option>
433
+ <option value="3">3 BHK</option>
434
+ <option value="4">4 BHK</option>
435
+ <option value="5">5+ BHK</option>
436
+ </select>
437
+ </div>
438
+ <div class="filter-group">
439
+ <label>Min Price (Lakhs)</label>
440
+ <input type="number" id="minPriceFilter" placeholder="e.g., 30">
441
+ </div>
442
+ <div class="filter-group">
443
+ <label>Max Price (Lakhs)</label>
444
+ <input type="number" id="maxPriceFilter" placeholder="e.g., 100">
445
+ </div>
446
+ <div class="filter-group">
447
+ <label>Min Area (Sq Ft)</label>
448
+ <input type="number" id="minAreaFilter" placeholder="e.g., 800">
449
+ </div>
450
+ <div class="filter-group">
451
+ <label>Max Area (Sq Ft)</label>
452
+ <input type="number" id="maxAreaFilter" placeholder="e.g., 2000">
453
+ </div>
454
+ <div class="filter-group">
455
+ <label>Area Type</label>
456
+ <select id="areaTypeFilter">
457
+ <option value="">Any Type</option>
458
+ </select>
459
+ </div>
460
+ <div class="filter-group">
461
+ <label>Availability</label>
462
+ <select id="availabilityFilter">
463
+ <option value="">Any Status</option>
464
+ </select>
465
+ </div>
466
+ </div>
467
+ <button class="btn btn-primary" onclick="applyFilters()" style="width: 100%;">Apply Filters</button>
468
+ </div>
469
+
470
+ <script>
471
+ let currentFilters = {};
472
+ let conversationContext = 0;
473
+
474
+ // Initialize the application
475
+ document.addEventListener('DOMContentLoaded', function() {
476
+ loadMarketData();
477
+ setupEventListeners();
478
+ });
479
+
480
+ function setupEventListeners() {
481
+ document.getElementById('messageInput').addEventListener('keypress', function(e) {
482
+ if (e.key === 'Enter') {
483
+ sendMessage();
484
+ }
485
+ });
486
+ }
487
+
488
+ async function loadMarketData() {
489
+ try {
490
+ const response = await fetch('/get_market_data');
491
+ const data = await response.json();
492
+
493
+ populateDropdowns(data);
494
+ updateStatusIndicator(true);
495
+ } catch (error) {
496
+ console.error('Error loading market data:', error);
497
+ updateStatusIndicator(false);
498
+ }
499
+ }
500
+
501
+ function populateDropdowns(data) {
502
+ const locationSelect = document.getElementById('locationFilter');
503
+ const areaTypeSelect = document.getElementById('areaTypeFilter');
504
+ const availabilitySelect = document.getElementById('availabilityFilter');
505
+
506
+ // Populate locations
507
+ data.locations.forEach(location => {
508
+ const option = document.createElement('option');
509
+ option.value = location;
510
+ option.textContent = location;
511
+ locationSelect.appendChild(option);
512
+ });
513
+
514
+ // Populate area types
515
+ data.area_types.forEach(type => {
516
+ const option = document.createElement('option');
517
+ option.value = type;
518
+ option.textContent = type;
519
+ areaTypeSelect.appendChild(option);
520
+ });
521
+
522
+ // Populate availability
523
+ data.availability_types.forEach(availability => {
524
+ const option = document.createElement('option');
525
+ option.value = availability;
526
+ option.textContent = availability;
527
+ availabilitySelect.appendChild(option);
528
+ });
529
+ }
530
+
531
+ function updateStatusIndicator(connected) {
532
+ const indicator = document.getElementById('statusIndicator');
533
+ if (connected) {
534
+ indicator.className = 'status-indicator status-connected';
535
+ indicator.textContent = 'Connected';
536
+ } else {
537
+ indicator.className = 'status-indicator status-error';
538
+ indicator.textContent = 'Error';
539
+ }
540
+ }
541
+
542
+ function showContextIndicator(show) {
543
+ const indicator = document.getElementById('contextIndicator');
544
+ indicator.style.display = show ? 'block' : 'none';
545
+ }
546
+
547
+ async function sendMessage() {
548
+ const messageInput = document.getElementById('messageInput');
549
+ const message = messageInput.value.trim();
550
+
551
+ if (!message) return;
552
+
553
+ addMessageToChat(message, 'user');
554
+ messageInput.value = '';
555
+
556
+ try {
557
+ const response = await fetch('/chat', {
558
+ method: 'POST',
559
+ headers: {
560
+ 'Content-Type': 'application/json',
561
+ },
562
+ body: JSON.stringify({ message })
563
+ });
564
+
565
+ const data = await response.json();
566
+
567
+ if (data.error) {
568
+ addMessageToChat(`Error: ${data.error}`, 'bot');
569
+ } else {
570
+ handleChatResponse(data);
571
+ }
572
+
573
+ conversationContext = data.conversation_context || 0;
574
+ showContextIndicator(conversationContext > 0);
575
+
576
+ } catch (error) {
577
+ addMessageToChat(`Error: ${error.message}`, 'bot');
578
+ updateStatusIndicator(false);
579
+ }
580
+ }
581
+
582
+ function handleChatResponse(data) {
583
+ const response = data.response;
584
+
585
+ if (response.error) {
586
+ addMessageToChat(`Error: ${response.error}`, 'bot');
587
+ return;
588
+ }
589
+
590
+ // Add insights to chat
591
+ if (response.insights) {
592
+ addMessageToChat(response.insights, 'bot');
593
+ }
594
+
595
+ // Update results
596
+ if (response.filtered_properties) {
597
+ displayProperties(response.filtered_properties);
598
+ }
599
+
600
+ if (response.analysis) {
601
+ displayAnalysis(response.analysis);
602
+ }
603
+
604
+ if (response.nearby_properties) {
605
+ displayNearbyProperties(response.nearby_properties);
606
+ }
607
+
608
+ // Show summary message
609
+ const summary = generateSummaryMessage(response);
610
+ addMessageToChat(summary, 'bot');
611
+ }
612
+
613
+ function generateSummaryMessage(response) {
614
+ const total = response.analysis?.total_properties || 0;
615
+ const priceRange = response.analysis?.price_range;
616
+
617
+ if (total === 0) {
618
+ return "No properties found matching your criteria. Try adjusting your search parameters.";
619
+ }
620
+
621
+ let summary = `Found ${total} properties`;
622
+ if (priceRange) {
623
+ summary += ` with prices ranging from ₹${priceRange.min.toFixed(2)}L to ₹${priceRange.max.toFixed(2)}L (avg: ₹${priceRange.avg.toFixed(2)}L)`;
624
+ }
625
+
626
+ return summary + ". Check the results tabs below for detailed analysis.";
627
+ }
628
+
629
+ function addMessageToChat(message, sender) {
630
+ const chatContainer = document.getElementById('chatContainer');
631
+ const messageDiv = document.createElement('div');
632
+ messageDiv.className = `message ${sender}-message`;
633
+
634
+ const senderLabel = sender === 'user' ? 'You' : 'AI Assistant';
635
+ messageDiv.innerHTML = `<strong>${senderLabel}:</strong> ${message}`;
636
+
637
+ chatContainer.appendChild(messageDiv);
638
+ chatContainer.scrollTop = chatContainer.scrollHeight;
639
+ }
640
+
641
+ async function applyFilters() {
642
+ const filters = {
643
+ location: document.getElementById('locationFilter').value,
644
+ bhk: document.getElementById('bhkFilter').value ? parseInt(document.getElementById('bhkFilter').value) : null,
645
+ min_price: document.getElementById('minPriceFilter').value ? parseFloat(document.getElementById('minPriceFilter').value) : null,
646
+ max_price: document.getElementById('maxPriceFilter').value ? parseFloat(document.getElementById('maxPriceFilter').value) : null,
647
+ min_area: document.getElementById('minAreaFilter').value ? parseFloat(document.getElementById('minAreaFilter').value) : null,
648
+ max_area: document.getElementById('maxAreaFilter').value ? parseFloat(document.getElementById('maxAreaFilter').value) : null,
649
+ area_type: document.getElementById('areaTypeFilter').value,
650
+ availability: document.getElementById('availabilityFilter').value
651
+ };
652
+
653
+ // Remove null values
654
+ Object.keys(filters).forEach(key => {
655
+ if (filters[key] === null || filters[key] === '') {
656
+ delete filters[key];
657
+ }
658
+ });
659
+
660
+ currentFilters = filters;
661
+
662
+ try {
663
+ showLoading('properties');
664
+ showLoading('analysis');
665
+
666
+ const response = await fetch('/filter_properties', {
667
+ method: 'POST',
668
+ headers: {
669
+ 'Content-Type': 'application/json',
670
+ },
671
+ body: JSON.stringify(filters)
672
+ });
673
+
674
+ const data = await response.json();
675
+
676
+ if (data.error) {
677
+ hideLoading('properties');
678
+ hideLoading('analysis');
679
+ alert(`Error: ${data.error}`);
680
+ } else {
681
+ displayProperties(data.properties);
682
+ displayAnalysis(data.analysis);
683
+ hideLoading('properties');
684
+ hideLoading('analysis');
685
+ }
686
+
687
+ } catch (error) {
688
+ hideLoading('properties');
689
+ hideLoading('analysis');
690
+ alert(`Error: ${error.message}`);
691
+ }
692
+ }
693
+
694
+ function displayProperties(properties) {
695
+ const container = document.getElementById('propertiesTable');
696
+
697
+ if (!properties || properties.length === 0) {
698
+ container.innerHTML = '<p>No properties found matching your criteria.</p>';
699
+ return;
700
+ }
701
+
702
+ let html = `
703
+ <table class="properties-table">
704
+ <thead>
705
+ <tr>
706
+ <th>Location</th>
707
+ <th>BHK</th>
708
+ <th>Area (Sq Ft)</th>
709
+ <th>Price (₹L)</th>
710
+ <th>Predicted (₹L)</th>
711
+ <th>Price/Sq Ft</th>
712
+ <th>Society</th>
713
+ <th>Availability</th>
714
+ </tr>
715
+ </thead>
716
+ <tbody>
717
+ `;
718
+
719
+ properties.forEach(property => {
720
+ const priceDiff = property.price_difference || 0;
721
+ const priceClass = priceDiff > 0 ? 'price-positive' : priceDiff < 0 ? 'price-negative' : '';
722
+
723
+ html += `
724
+ <tr>
725
+ <td>${property.site_location}</td>
726
+ <td>${property.bhk}</td>
727
+ <td>${property.total_sqft}</td>
728
+ <td>₹${property.price.toFixed(2)}</td>
729
+ <td class="${priceClass}">���${(property.predicted_price || property.price).toFixed(2)}</td>
730
+ <td>₹${Math.round(property.price_per_sqft)}</td>
731
+ <td>${property.society || 'N/A'}</td>
732
+ <td>${property.availability}</td>
733
+ </tr>
734
+ `;
735
+ });
736
+
737
+ html += '</tbody></table>';
738
+ container.innerHTML = html;
739
+ }
740
+
741
+ function displayAnalysis(analysis) {
742
+ const container = document.getElementById('analysisContent');
743
+
744
+ if (!analysis || analysis.total_properties === 0) {
745
+ container.innerHTML = '<p>No analysis available.</p>';
746
+ return;
747
+ }
748
+
749
+ const html = `
750
+ <div class="analysis-grid">
751
+ <div class="analysis-card">
752
+ <h4>Total Properties</h4>
753
+ <div class="value">${analysis.total_properties}</div>
754
+ </div>
755
+ <div class="analysis-card">
756
+ <h4>Price Range</h4>
757
+ <div class="value">₹${analysis.price_range.min.toFixed(2)}L - ₹${analysis.price_range.max.toFixed(2)}L</div>
758
+ </div>
759
+ <div class="analysis-card">
760
+ <h4>Average Price</h4>
761
+ <div class="value">₹${analysis.price_range.avg.toFixed(2)}L</div>
762
+ </div>
763
+ <div class="analysis-card">
764
+ <h4>Median Price</h4>
765
+ <div class="value">₹${analysis.price_range.median.toFixed(2)}L</div>
766
+ </div>
767
+ <div class="analysis-card">
768
+ <h4>Avg Area</h4>
769
+ <div class="value">${Math.round(analysis.area_range.avg)} Sq Ft</div>
770
+ </div>
771
+ <div class="analysis-card">
772
+ <h4>Avg Price/Sq Ft</h4>
773
+ <div class="value">₹${Math.round(analysis.price_per_sqft.avg)}</div>
774
+ </div>
775
+ </div>
776
+
777
+ <div class="insights-section">
778
+ <h3>Location Distribution</h3>
779
+ ${Object.entries(analysis.location_distribution).map(([location, count]) =>
780
+ `<p><strong>${location}:</strong> ${count} properties</p>`
781
+ ).join('')}
782
+ </div>
783
+
784
+ <div class="insights-section">
785
+ <h3>Area Type Distribution</h3>
786
+ ${Object.entries(analysis.area_type_distribution).map(([type, count]) =>
787
+ `<p><strong>${type}:</strong> ${count} properties</p>`
788
+ ).join('')}
789
+ </div>
790
+ `;
791
+
792
+ container.innerHTML = html;
793
+ }
794
+
795
+ function displayNearbyProperties(content) {
796
+ const container = document.getElementById('nearbyContent');
797
+ container.innerHTML = `
798
+ <div class="insights-section">
799
+ <h3>Nearby Properties & Market Trends</h3>
800
+ <div style="white-space: pre-wrap;">${content}</div>
801
+ </div>
802
+ `;
803
+ }
804
+
805
+ async function getInsights() {
806
+ try {
807
+ showLoading('insights');
808
+
809
+ const response = await fetch('/get_insights', {
810
+ method: 'POST',
811
+ headers: {
812
+ 'Content-Type': 'application/json',
813
+ },
814
+ body: JSON.stringify({
815
+ location: currentFilters.location,
816
+ requirements: currentFilters
817
+ })
818
+ });
819
+
820
+ const data = await response.json();
821
+
822
+ if (data.error) {
823
+ alert(`Error: ${data.error}`);
824
+ } else {
825
+ displayInsights(data.insights);
826
+ if (data.nearby_properties) {
827
+ displayNearbyProperties(data.nearby_properties);
828
+ }
829
+ }
830
+
831
+ hideLoading('insights');
832
+ showTab('insights');
833
+
834
+ } catch (error) {
835
+ hideLoading('insights');
836
+ alert(`Error: ${error.message}`);
837
+ }
838
+ }
839
+
840
+ function displayInsights(insights) {
841
+ const container = document.getElementById('insightsContent');
842
+ container.innerHTML = `
843
+ <div class="insights-section">
844
+ <h3>AI-Powered Market Insights</h3>
845
+ <div style="white-space: pre-wrap; line-height: 1.6;">${insights}</div>
846
+ </div>
847
+ `;
848
+ }
849
+
850
+ async function resetSession() {
851
+ try {
852
+ await fetch('/reset_session', { method: 'POST' });
853
+
854
+ // Clear chat
855
+ document.getElementById('chatContainer').innerHTML = `
856
+ <div class="message bot-message">
857
+ <strong>AI Assistant:</strong> Session reset! I'm ready to help you find properties again.
858
+ </div>
859
+ `;
860
+
861
+ // Clear filters
862
+ document.getElementById('locationFilter').value = '';
863
+ document.getElementById('bhkFilter').value = '';
864
+ document.getElementById('minPriceFilter').value = '';
865
+ document.getElementById('maxPriceFilter').value = '';
866
+ document.getElementById('minAreaFilter').value = '';
867
+ document.getElementById('maxAreaFilter').value = '';
868
+ document.getElementById('areaTypeFilter').value = '';
869
+ document.getElementById('availabilityFilter').value = '';
870
+
871
+ // Clear results
872
+ document.getElementById('propertiesTable').innerHTML = '';
873
+ document.getElementById('analysisContent').innerHTML = '';
874
+ document.getElementById('insightsContent').innerHTML = '';
875
+ document.getElementById('nearbyContent').innerHTML = '';
876
+
877
+ currentFilters = {};
878
+ conversationContext = 0;
879
+ showContextIndicator(false);
880
+
881
+ } catch (error) {
882
+ alert(`Error: ${error.message}`);
883
+ }
884
+ }
885
+
886
+ function showTab(tabName) {
887
+ // Hide all tab contents
888
+ document.querySelectorAll('.tab-content').forEach(content => {
889
+ content.classList.remove('active');
890
+ });
891
+
892
+ // Remove active class from all tabs
893
+ document.querySelectorAll('.tab').forEach(tab => {
894
+ tab.classList.remove('active');
895
+ });
896
+
897
+ // Show selected tab content
898
+ document.getElementById(tabName).classList.add('active');
899
+
900
+ // Add active class to selected tab
901
+ event.target.classList.add('active');
902
+ }
903
+
904
+ function showLoading(tabName) {
905
+ const loadingElement = document.getElementById(tabName + 'Loading');
906
+ if (loadingElement) {
907
+ loadingElement.style.display = 'block';
908
+ }
909
+ }
910
+
911
+ function hideLoading(tabName) {
912
+ const loadingElement = document.getElementById(tabName + 'Loading');
913
+ if (loadingElement) {
914
+ loadingElement.style.display = 'none';
915
+ }
916
+ }
917
+
918
+ </script>
919
+ </body>
920
+ </html>