File size: 6,509 Bytes
afeacc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import streamlit as st
from PyPDF2 import PdfReader
import textract
from transformers import pipeline
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import random

# Function to create a multi-color line
def multicolor_line():
    colors = ["#FF5733", "#33FF57", "#3357FF", "#FF33A1", "#FFC300"]
    return f'<hr style="border: 1px solid {random.choice(colors)};">'

# Initialize the Hugging Face model for summarization
@st.cache_resource
def load_summarization_model():
    return pipeline("summarization", model="facebook/bart-large-cnn")

# Initialize the Hugging Face model for critique generation (using T5)
@st.cache_resource
def load_critique_model():
    return pipeline("text2text-generation", model="t5-base")

summarizer = load_summarization_model()
critique_generator = load_critique_model()

# Function to extract text from PDFs
def extract_text_from_pdf(pdf_file="/content/A_Validation_of_Six_Wearable_Devices_for_Estimatin.pdf"):
    pdf_reader = PdfReader(pdf_file)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text

# Function to extract text from text files
def extract_text_from_file(txt_file):
    with open(txt_file, "r") as file:
        text = file.read()
    return text

# Function to extract text from scanned PDFs or other formats
def extract_text_from_scanned_pdf(pdf_file):
    text = textract.process(pdf_file).decode("utf-8")
    return text

# Function to generate the summary using Hugging Face (BART model)
def summarize_text(text):
    max_len = 1024  # Define the max input length for the summarizer
    min_len = 50    # Define the minimum length for the summary

    if not text.strip():
        raise ValueError("Input text is empty, unable to summarize.")
    
    if len(text.split()) > max_len:
        text = " ".join(text.split()[:max_len])
    
    if len(text.split()) < min_len:
        raise ValueError("Input text is too short for summarization.")

    summary = summarizer(text, max_length=200, min_length=50, do_sample=False)
    return summary[0]['summary_text']

# Function to generate critique using the Hugging Face T5 model
def generate_critique(summary):
    critique_input = f"Critique: {summary}"
    critique = critique_generator(critique_input)
    return critique[0]['generated_text']

# Function to refine the summary using critique feedback
def refine_summary(summary, critique):
    refinement_input = f"Summary: {summary}\n\nCritique: {critique}\n\nRefine this into a cohesive and polished summary:"
    refined_output = summarizer(refinement_input, max_length=300, min_length=100, do_sample=False)
    return refined_output[0]['summary_text']

# LangChain Integration: Set up Hugging Face as the LLM for LangChain
hf_llm = HuggingFaceHub(repo_id="facebook/bart-large-cnn", model_kwargs={"temperature": 0.5} )

# Create a PromptTemplate for summarization
prompt_template = PromptTemplate(
    input_variables=["text"],
    template="Summarize the following text:\n{text}"
)

# Define the LangChain chain for summarization
def create_summarization_chain():
    chain = LLMChain(llm=hf_llm, prompt=prompt_template)
    return chain

# Update the Streamlit workflow
def main():
    st.title("Multi-Agent Research Assistant for Refining Academic Content")
    st.write("Upload a PDF or Text file to start the process.")

    uploaded_file = st.file_uploader("Choose a PDF or Text file", type=["pdf", "txt"])

    if uploaded_file is not None:
        # Extract text from uploaded file
        file_extension = uploaded_file.name.split('.')[-1].lower()

        if file_extension == 'pdf':
            st.write("Extracting text from PDF...")
            text = extract_text_from_pdf(uploaded_file)
        elif file_extension == 'txt':
            st.write("Extracting text from Text file...")
            text = extract_text_from_file(uploaded_file)
        else:
            st.error("Unsupported file type. Please upload a PDF or a Text file.")
            return

        if text.strip() == "":
            st.error("No text could be extracted from the file.")
            return
        
        # Show extracted text if checkbox is checked
        show_text = st.checkbox("Show extracted text")
        if show_text:
            # Increase the width of the text area slightly
            st.text_area("Extracted Text", text, height=200, max_chars=2000, key="extracted_text", label_visibility="hidden")

        # Show multi-color line after text extraction
        st.markdown(multicolor_line(), unsafe_allow_html=True)

        # Summarize text using Hugging Face model (BART)
        st.write("Summarizing the content...")
        try:
            summary = summarize_text(text)
            st.write("Summary:")
            # Increase the width of the summary text area
            st.text_area("Summary", summary, height=200, max_chars=2000, key="summary", label_visibility="hidden")
        except Exception as e:
            st.error(f"Error generating summary:\n\n{e}")
            return

        # Show multi-color line after summarization
        st.markdown(multicolor_line(), unsafe_allow_html=True)

        # Generate critique based on summary using Hugging Face model (T5)
        st.write("Generating critique...")
        try:
            critique = generate_critique(summary)
            st.write("Critique:")
            # Increase the width of the critique text area
            st.text_area("Critique", critique, height=200, max_chars=2000, key="critique", label_visibility="hidden")
        except Exception as e:
            st.error(f"Error generating critique:\n\n{e}")
            return

        # Show multi-color line after critique generation
        st.markdown(multicolor_line(), unsafe_allow_html=True)

        # Refine the summary using critique feedback
        st.write("Refining the summary...")
        try:
            refined_summary = refine_summary(summary, critique)
            st.write("Refined Summary:")
            # Increase the width of the refined summary text area
            st.text_area("Refined Summary", refined_summary, height=200, max_chars=2000, key="refined_summary", label_visibility="hidden")
        except Exception as e:
            st.error(f"Error refining summary:\n\n{e}")
            return

        # Show multi-color line after refinement
        st.markdown(multicolor_line(), unsafe_allow_html=True)

if __name__ == "__main__":
    main()