prasad6145's picture
Create app.py
4404380 verified
from flask import Flask, request, jsonify
import tensorflow as tf
import numpy as np
import os
app = Flask(__name__)
# Load the model
model_path = "sleep_cognition_model.h5"
if not os.path.exists(model_path):
raise FileNotFoundError(f"⚠️ Model file not found: {model_path}. Please check the path.")
model = tf.keras.models.load_model(model_path)
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Sleep Cognition Model API is running!"})
@app.route("/predict", methods=["POST"])
def predict():
try:
data = request.json["input"]
data = np.array(data).reshape(1, -1) # Reshape input data if needed
prediction = model.predict(data)
return jsonify({"prediction": prediction.tolist()})
except Exception as e:
return jsonify({"error": str(e)}), 400
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)