prasanth345 commited on
Commit
76fcfa6
·
verified ·
1 Parent(s): c2617f4

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. main.py +55 -0
  3. trained_plant_disease_model.keras +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ trained_plant_disease_model.keras filter=lfs diff=lfs merge=lfs -text
main.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ def model_prediction(test_image):
5
+ model = tf.keras.models.load_model("trained_plant_disease_model.keras")
6
+ image = tf.keras.preprocessing.image.load_img(test_image,target_size=(128,128))
7
+ input_arr = tf.keras.preprocessing.image.img_to_array(image)
8
+ input_arr = np.array([input_arr]) #convert single image to batch
9
+ predictions = model.predict(input_arr)
10
+ return np.argmax(predictions) #return index of max element
11
+
12
+ #Sidebar
13
+ st.sidebar.title("AgriSens")
14
+ app_mode = st.sidebar.selectbox("Select Page",["HOME","DISEASE RECOGNITION"])
15
+ #app_mode = st.sidebar.selectbox("Select Page",["Home","About","Disease Recognition"])
16
+
17
+ # import Image from pillow to open images
18
+ from PIL import Image
19
+ img = Image.open("Diseases.png")
20
+
21
+ # display image using streamlit
22
+ # width is used to set the width of an image
23
+ st.image(img)
24
+
25
+ #Main Page
26
+ if(app_mode=="HOME"):
27
+ st.markdown("<h1 style='text-align: center;'>SMART DISEASE DETECTION", unsafe_allow_html=True)
28
+
29
+ #Prediction Page
30
+ elif(app_mode=="DISEASE RECOGNITION"):
31
+ st.header("DISEASE RECOGNITION")
32
+ test_image = st.file_uploader("Choose an Image:")
33
+ if(st.button("Show Image")):
34
+ st.image(test_image,width=4,use_column_width=True)
35
+ #Predict button
36
+ if(st.button("Predict")):
37
+ st.snow()
38
+ st.write("Our Prediction")
39
+ result_index = model_prediction(test_image)
40
+ #Reading Labels
41
+ class_name = ['Apple___Apple_scab', 'Apple___Black_rot', 'Apple___Cedar_apple_rust', 'Apple___healthy',
42
+ 'Blueberry___healthy', 'Cherry_(including_sour)___Powdery_mildew',
43
+ 'Cherry_(including_sour)___healthy', 'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
44
+ 'Corn_(maize)___Common_rust_', 'Corn_(maize)___Northern_Leaf_Blight', 'Corn_(maize)___healthy',
45
+ 'Grape___Black_rot', 'Grape___Esca_(Black_Measles)', 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
46
+ 'Grape___healthy', 'Orange___Haunglongbing_(Citrus_greening)', 'Peach___Bacterial_spot',
47
+ 'Peach___healthy', 'Pepper,_bell___Bacterial_spot', 'Pepper,_bell___healthy',
48
+ 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy',
49
+ 'Raspberry___healthy', 'Soybean___healthy', 'Squash___Powdery_mildew',
50
+ 'Strawberry___Leaf_scorch', 'Strawberry___healthy', 'Tomato___Bacterial_spot',
51
+ 'Tomato___Early_blight', 'Tomato___Late_blight', 'Tomato___Leaf_Mold',
52
+ 'Tomato___Septoria_leaf_spot', 'Tomato___Spider_mites Two-spotted_spider_mite',
53
+ 'Tomato___Target_Spot', 'Tomato___Tomato_Yellow_Leaf_Curl_Virus', 'Tomato___Tomato_mosaic_virus',
54
+ 'Tomato___healthy']
55
+ st.success("Model is Predicting it's a {}".format(class_name[result_index]))
trained_plant_disease_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2958851ea32bd3e01e131f1042a2eb7e64bd719b7fc4470dbdbd1e513386201
3
+ size 94195019