Upload 8 files
Browse files- app.py +100 -0
- config/__init__.py +0 -0
- config/config.py +25 -0
- requirements.txt +11 -0
- services/__init__.py +0 -0
- services/qwen.py +93 -0
- services/search.py +85 -0
- services/whisper.py +92 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import logging
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from services.qwen import respond
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
# Track conversation state
|
11 |
+
conversation_history = []
|
12 |
+
|
13 |
+
def clear_conversation():
|
14 |
+
global conversation_history
|
15 |
+
conversation_history = []
|
16 |
+
return [],None
|
17 |
+
|
18 |
+
def sync_respond(audio, text_input, do_search, history):
|
19 |
+
if not audio and not text_input:
|
20 |
+
return None, history
|
21 |
+
|
22 |
+
logger.info(f"Processing request with search enabled: {do_search}")
|
23 |
+
result = asyncio.run(respond(audio, text_input, do_search, history))
|
24 |
+
audio_path, response_text = result
|
25 |
+
|
26 |
+
if audio:
|
27 |
+
user_message = {"role": "user", "content": "Voice message"}
|
28 |
+
else:
|
29 |
+
user_message = {"role": "user", "content": text_input}
|
30 |
+
|
31 |
+
assistant_message = {"role": "assistant", "content": response_text}
|
32 |
+
history.extend([user_message, assistant_message])
|
33 |
+
|
34 |
+
return audio_path, history
|
35 |
+
|
36 |
+
# Build Gradio interface
|
37 |
+
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
38 |
+
gr.Markdown(
|
39 |
+
"""
|
40 |
+
<div style="text-align: center; margin-bottom: 1rem;">
|
41 |
+
<h1 style="font-weight: bold;">ConversAI: AI Voice & Chat Assistant</h1>
|
42 |
+
</div>
|
43 |
+
""",
|
44 |
+
show_label=False
|
45 |
+
)
|
46 |
+
|
47 |
+
# Input components (left column)
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column(scale=2):
|
50 |
+
audio_input = gr.Audio(
|
51 |
+
label="Your Voice Input",
|
52 |
+
type="filepath",
|
53 |
+
sources=["microphone"]
|
54 |
+
)
|
55 |
+
text_input = gr.Textbox(
|
56 |
+
label="Or Type Your Message",
|
57 |
+
placeholder="Type here..."
|
58 |
+
)
|
59 |
+
search_checkbox = gr.Checkbox(
|
60 |
+
label="Enable web search",
|
61 |
+
value=False
|
62 |
+
)
|
63 |
+
clear_btn = gr.Button("Clear Chat")
|
64 |
+
|
65 |
+
# Output components (right column)
|
66 |
+
with gr.Column(scale=3):
|
67 |
+
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
68 |
+
audio_output = gr.Audio(
|
69 |
+
label="AI Voice Response",
|
70 |
+
type="filepath",
|
71 |
+
autoplay=True
|
72 |
+
)
|
73 |
+
|
74 |
+
# Define input event handlers
|
75 |
+
input_events = [
|
76 |
+
audio_input.change(
|
77 |
+
fn=sync_respond,
|
78 |
+
inputs=[audio_input, text_input,search_checkbox, chatbot],
|
79 |
+
outputs=[audio_output, chatbot]
|
80 |
+
),
|
81 |
+
text_input.submit(
|
82 |
+
fn=sync_respond,
|
83 |
+
inputs=[audio_input, text_input, search_checkbox, chatbot],
|
84 |
+
outputs=[audio_output, chatbot]
|
85 |
+
)
|
86 |
+
]
|
87 |
+
|
88 |
+
# Clear chat button handler
|
89 |
+
clear_btn.click(
|
90 |
+
fn=clear_conversation,
|
91 |
+
outputs=[chatbot, audio_output]
|
92 |
+
)
|
93 |
+
|
94 |
+
# Start server
|
95 |
+
if __name__ == "__main__":
|
96 |
+
interface.launch(
|
97 |
+
server_name="0.0.0.0",
|
98 |
+
server_port=7860,
|
99 |
+
debug=True
|
100 |
+
)
|
config/__init__.py
ADDED
File without changes
|
config/config.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
# Configure logging
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
# Load environment variables
|
10 |
+
load_dotenv()
|
11 |
+
token = os.getenv("hf_key")
|
12 |
+
|
13 |
+
# Set compute device (cpu/cuda)
|
14 |
+
device = "cpu"
|
15 |
+
logger.info(f"Device set to use {device}")
|
16 |
+
|
17 |
+
# AI Assistant Configuration
|
18 |
+
SYSTEM_PROMPT = """You are ConversAI, a helpful AI assistant who remembers conversation history. Keep responses clear, friendly and natural. Always refer to previous context when responding."""
|
19 |
+
|
20 |
+
# Text-to-Speech Voice Settings (primary/backup)
|
21 |
+
VOICE = "en-US-JennyNeural"
|
22 |
+
FALLBACK_VOICES = ["en-US-ChristopherNeural", "en-US-EricNeural"]
|
23 |
+
|
24 |
+
# Audio Output Configuration
|
25 |
+
OUTPUT_FORMAT = "audio-24khz-48kbit-mono-mp3"
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
edge-tts
|
3 |
+
numpy
|
4 |
+
soxr
|
5 |
+
pydub
|
6 |
+
torch
|
7 |
+
sentencepiece
|
8 |
+
onnxruntime
|
9 |
+
huggingface-hub
|
10 |
+
python-dotenv
|
11 |
+
asyncio
|
services/__init__.py
ADDED
File without changes
|
services/qwen.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import List, Dict, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
from config.config import token, device, SYSTEM_PROMPT
|
9 |
+
from services.whisper import generate_speech, transcribe
|
10 |
+
from services.search import WebSearcher
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
searcher = WebSearcher()
|
15 |
+
|
16 |
+
# Qwen Configuration
|
17 |
+
model_kwargs = {
|
18 |
+
"low_cpu_mem_usage": True,
|
19 |
+
"torch_dtype": torch.float32,
|
20 |
+
'use_cache': True
|
21 |
+
}
|
22 |
+
client = pipeline(
|
23 |
+
"text-generation",
|
24 |
+
model="Qwen/Qwen2.5-0.5B-Instruct",
|
25 |
+
token=token,
|
26 |
+
trust_remote_code=True,
|
27 |
+
device=device,
|
28 |
+
model_kwargs=model_kwargs
|
29 |
+
)
|
30 |
+
|
31 |
+
async def respond(
|
32 |
+
audio: Optional[str] = None,
|
33 |
+
text: Optional[str] = None,
|
34 |
+
do_search: bool = False,
|
35 |
+
history: List[Dict] = None
|
36 |
+
) -> Tuple[Optional[str], str]:
|
37 |
+
try:
|
38 |
+
if text:
|
39 |
+
user_text = text.strip()
|
40 |
+
elif audio:
|
41 |
+
user_text = await transcribe(audio)
|
42 |
+
else:
|
43 |
+
return None, "No input provided"
|
44 |
+
|
45 |
+
# Build conversation context
|
46 |
+
messages = []
|
47 |
+
messages.append({"role": "system", "content": SYSTEM_PROMPT})
|
48 |
+
|
49 |
+
if history:
|
50 |
+
messages.extend(history)
|
51 |
+
|
52 |
+
# Format message history for Qwen
|
53 |
+
prompt = ""
|
54 |
+
for msg in messages:
|
55 |
+
role = msg["role"]
|
56 |
+
content = msg["content"]
|
57 |
+
prompt += f"<|im_start|>{role}\n{content}<|im_end|>\n"
|
58 |
+
|
59 |
+
# Add current user message
|
60 |
+
prompt += f"<|im_start|>user\n{user_text}<|im_end|>\n<|im_start|>assistant\n"
|
61 |
+
|
62 |
+
# Add web-search context if enabled
|
63 |
+
if do_search:
|
64 |
+
results = searcher.search(user_text)
|
65 |
+
if results:
|
66 |
+
search_context = "Based on search results:\n"
|
67 |
+
for result in results:
|
68 |
+
snippet = result['content'][:500].strip()
|
69 |
+
search_context += f"{snippet}\n"
|
70 |
+
prompt = prompt.replace(SYSTEM_PROMPT, f"{SYSTEM_PROMPT}\n{search_context}")
|
71 |
+
|
72 |
+
# Generate response
|
73 |
+
reply = client(
|
74 |
+
prompt,
|
75 |
+
max_new_tokens=400,
|
76 |
+
do_sample=True,
|
77 |
+
temperature=0.7,
|
78 |
+
top_p=0.9,
|
79 |
+
num_return_sequences=1
|
80 |
+
)
|
81 |
+
|
82 |
+
# Extract and clean assistant response
|
83 |
+
assistant_response = reply[0]['generated_text']
|
84 |
+
assistant_response = assistant_response.split("<|im_start|>assistant\n")[-1]
|
85 |
+
assistant_response = assistant_response.split("<|im_end|>")[0].strip()
|
86 |
+
|
87 |
+
# Convert response to speech
|
88 |
+
audio_path = await generate_speech(assistant_response)
|
89 |
+
return audio_path, assistant_response
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Error in respond: {str(e)}")
|
93 |
+
return None, "Sorry, I encountered an error"
|
services/search.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import List, Dict
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from urllib3.exceptions import InsecureRequestWarning
|
7 |
+
|
8 |
+
# Disable SSL warnings for requests
|
9 |
+
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class WebSearcher:
|
14 |
+
def __init__(self):
|
15 |
+
self.headers = {
|
16 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"
|
17 |
+
}
|
18 |
+
|
19 |
+
def extract_text(self, html_content: str) -> str:
|
20 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
21 |
+
# Remove unwanted elements
|
22 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'iframe']):
|
23 |
+
element.decompose()
|
24 |
+
text = ' '.join(soup.stripped_strings)
|
25 |
+
return text[:8000] # Limit text length
|
26 |
+
|
27 |
+
def search(self, query: str, max_results: int = 3) -> List[Dict]:
|
28 |
+
results = []
|
29 |
+
try:
|
30 |
+
with requests.Session() as session:
|
31 |
+
# Google search parameters
|
32 |
+
search_url = "https://www.google.com/search"
|
33 |
+
params = {
|
34 |
+
"q": query,
|
35 |
+
"num": max_results,
|
36 |
+
"hl": "en"
|
37 |
+
}
|
38 |
+
|
39 |
+
response = session.get(
|
40 |
+
search_url,
|
41 |
+
headers=self.headers,
|
42 |
+
params=params,
|
43 |
+
timeout=10,
|
44 |
+
verify=False
|
45 |
+
)
|
46 |
+
response.raise_for_status()
|
47 |
+
|
48 |
+
# Parse search results
|
49 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
50 |
+
search_results = soup.select('div.g')
|
51 |
+
|
52 |
+
for result in search_results[:max_results]:
|
53 |
+
link = result.find('a')
|
54 |
+
if not link:
|
55 |
+
continue
|
56 |
+
|
57 |
+
url = link.get('href', '')
|
58 |
+
if not url.startswith('http'):
|
59 |
+
continue
|
60 |
+
|
61 |
+
try:
|
62 |
+
# Fetch webpage content
|
63 |
+
page_response = session.get(
|
64 |
+
url,
|
65 |
+
headers=self.headers,
|
66 |
+
timeout=5,
|
67 |
+
verify=False
|
68 |
+
)
|
69 |
+
page_response.raise_for_status()
|
70 |
+
|
71 |
+
content = self.extract_text(page_response.text)
|
72 |
+
results.append({
|
73 |
+
"url": url,
|
74 |
+
"content": content
|
75 |
+
})
|
76 |
+
logger.info(f"Successfully fetched content from {url}")
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
logger.warning(f"Failed to fetch {url}: {str(e)}")
|
80 |
+
continue
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Search failed: {str(e)}")
|
84 |
+
|
85 |
+
return results[:max_results]
|
services/whisper.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import logging
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import librosa
|
8 |
+
import edge_tts
|
9 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
10 |
+
|
11 |
+
from config.config import VOICE, FALLBACK_VOICES
|
12 |
+
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Whisper model for speech to text
|
17 |
+
processor = WhisperProcessor.from_pretrained(
|
18 |
+
"openai/whisper-tiny",
|
19 |
+
local_files_only=False
|
20 |
+
)
|
21 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
22 |
+
"openai/whisper-tiny",
|
23 |
+
local_files_only=False,
|
24 |
+
low_cpu_mem_usage=True,
|
25 |
+
torch_dtype=torch.float32,
|
26 |
+
).to("cpu")
|
27 |
+
|
28 |
+
# Voice selection handling
|
29 |
+
async def get_valid_voice() -> str:
|
30 |
+
available_voices = await edge_tts.list_voices()
|
31 |
+
voice_names = [VOICE] + FALLBACK_VOICES
|
32 |
+
|
33 |
+
available_voice_names = {v["ShortName"] for v in available_voices}
|
34 |
+
for voice in voice_names:
|
35 |
+
if voice in available_voice_names:
|
36 |
+
return voice
|
37 |
+
|
38 |
+
raise RuntimeError("No valid voice found")
|
39 |
+
|
40 |
+
# Text-to-speech conversion using Edge TTS
|
41 |
+
async def generate_speech(text: str) -> Optional[str]:
|
42 |
+
if not text or not isinstance(text, str):
|
43 |
+
raise ValueError("Invalid text input")
|
44 |
+
|
45 |
+
voice = await get_valid_voice()
|
46 |
+
logger.info(f"Using voice: {voice}")
|
47 |
+
|
48 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
49 |
+
tmp_path = tmp_file.name
|
50 |
+
|
51 |
+
communicate = edge_tts.Communicate(text, voice)
|
52 |
+
await communicate.save(tmp_path)
|
53 |
+
|
54 |
+
if not os.path.exists(tmp_path) or os.path.getsize(tmp_path) == 0:
|
55 |
+
raise RuntimeError("Speech file empty or not created")
|
56 |
+
|
57 |
+
logger.info(f"Speech generated successfully: {tmp_path}")
|
58 |
+
return tmp_path
|
59 |
+
|
60 |
+
# Speech-to-text using Whisper
|
61 |
+
async def transcribe(audio_file: str) -> str:
|
62 |
+
audio, sr = librosa.load(
|
63 |
+
audio_file,
|
64 |
+
sr=16000,
|
65 |
+
mono=True,
|
66 |
+
duration=30
|
67 |
+
)
|
68 |
+
|
69 |
+
inputs = processor(
|
70 |
+
audio,
|
71 |
+
sampling_rate=sr,
|
72 |
+
return_tensors="pt",
|
73 |
+
return_attention_mask=True
|
74 |
+
).to(model.device)
|
75 |
+
|
76 |
+
with torch.no_grad():
|
77 |
+
generated_ids = model.generate(
|
78 |
+
input_features=inputs.input_features,
|
79 |
+
attention_mask=inputs.attention_mask,
|
80 |
+
language="en",
|
81 |
+
task="transcribe",
|
82 |
+
max_length=448,
|
83 |
+
temperature=0.0
|
84 |
+
)
|
85 |
+
|
86 |
+
transcription = processor.batch_decode(
|
87 |
+
generated_ids,
|
88 |
+
skip_special_tokens=True
|
89 |
+
)[0].strip()
|
90 |
+
|
91 |
+
logger.info(f"Transcribed text: {transcription}")
|
92 |
+
return transcription
|