Upload 8 files
Browse files- services/qwen.py +18 -16
- services/search.py +1 -1
- services/whisper.py +20 -44
services/qwen.py
CHANGED
@@ -2,10 +2,10 @@ import logging
|
|
2 |
from typing import List, Dict, Optional, Tuple
|
3 |
|
4 |
import torch
|
5 |
-
from transformers import pipeline
|
6 |
-
from
|
7 |
|
8 |
-
from config.config import token,
|
9 |
from services.whisper import generate_speech, transcribe
|
10 |
from services.search import WebSearcher
|
11 |
|
@@ -19,13 +19,12 @@ model_kwargs = {
|
|
19 |
"torch_dtype": torch.float32,
|
20 |
'use_cache': True
|
21 |
}
|
22 |
-
client =
|
23 |
-
"text-generation",
|
24 |
model="Qwen/Qwen2.5-0.5B-Instruct",
|
25 |
-
token=token
|
26 |
-
trust_remote_code=True,
|
27 |
-
device=device,
|
28 |
-
model_kwargs=model_kwargs
|
29 |
)
|
30 |
|
31 |
async def respond(
|
@@ -65,24 +64,27 @@ async def respond(
|
|
65 |
if results:
|
66 |
search_context = "Based on search results:\n"
|
67 |
for result in results:
|
68 |
-
snippet = result['content'][:
|
69 |
search_context += f"{snippet}\n"
|
70 |
prompt = prompt.replace(SYSTEM_PROMPT, f"{SYSTEM_PROMPT}\n{search_context}")
|
71 |
|
72 |
# Generate response
|
73 |
-
reply = client(
|
74 |
prompt,
|
75 |
-
max_new_tokens=
|
76 |
do_sample=True,
|
77 |
temperature=0.7,
|
78 |
top_p=0.9,
|
79 |
-
|
80 |
)
|
81 |
|
82 |
# Extract and clean assistant response
|
83 |
-
assistant_response = reply
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
# Convert response to speech
|
88 |
audio_path = await generate_speech(assistant_response)
|
|
|
2 |
from typing import List, Dict, Optional, Tuple
|
3 |
|
4 |
import torch
|
5 |
+
# from transformers import pipeline
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
|
8 |
+
from config.config import token, SYSTEM_PROMPT
|
9 |
from services.whisper import generate_speech, transcribe
|
10 |
from services.search import WebSearcher
|
11 |
|
|
|
19 |
"torch_dtype": torch.float32,
|
20 |
'use_cache': True
|
21 |
}
|
22 |
+
client = InferenceClient(
|
|
|
23 |
model="Qwen/Qwen2.5-0.5B-Instruct",
|
24 |
+
token=token
|
25 |
+
# trust_remote_code=True,
|
26 |
+
# device=device,
|
27 |
+
# model_kwargs=model_kwargs
|
28 |
)
|
29 |
|
30 |
async def respond(
|
|
|
64 |
if results:
|
65 |
search_context = "Based on search results:\n"
|
66 |
for result in results:
|
67 |
+
snippet = result['content'][:5000].strip()
|
68 |
search_context += f"{snippet}\n"
|
69 |
prompt = prompt.replace(SYSTEM_PROMPT, f"{SYSTEM_PROMPT}\n{search_context}")
|
70 |
|
71 |
# Generate response
|
72 |
+
reply = client.text_generation(
|
73 |
prompt,
|
74 |
+
max_new_tokens=300,
|
75 |
do_sample=True,
|
76 |
temperature=0.7,
|
77 |
top_p=0.9,
|
78 |
+
return_full_text=False
|
79 |
)
|
80 |
|
81 |
# Extract and clean assistant response
|
82 |
+
assistant_response = reply # Reply is already the generated text string
|
83 |
+
if "<|im_start|>assistant\n" in assistant_response:
|
84 |
+
assistant_response = assistant_response.split("<|im_start|>assistant\n")[-1]
|
85 |
+
if "<|im_end|>" in assistant_response:
|
86 |
+
assistant_response = assistant_response.split("<|im_end|>")[0]
|
87 |
+
assistant_response = assistant_response.strip()
|
88 |
|
89 |
# Convert response to speech
|
90 |
audio_path = await generate_speech(assistant_response)
|
services/search.py
CHANGED
@@ -40,7 +40,7 @@ class WebSearcher:
|
|
40 |
search_url,
|
41 |
headers=self.headers,
|
42 |
params=params,
|
43 |
-
timeout=
|
44 |
verify=False
|
45 |
)
|
46 |
response.raise_for_status()
|
|
|
40 |
search_url,
|
41 |
headers=self.headers,
|
42 |
params=params,
|
43 |
+
timeout=3,
|
44 |
verify=False
|
45 |
)
|
46 |
response.raise_for_status()
|
services/whisper.py
CHANGED
@@ -1,29 +1,19 @@
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import logging
|
|
|
4 |
from typing import Optional
|
5 |
|
6 |
-
import torch
|
7 |
-
import librosa
|
8 |
import edge_tts
|
9 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
10 |
|
11 |
-
from config.config import VOICE, FALLBACK_VOICES
|
12 |
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Whisper model for speech to text
|
17 |
-
|
18 |
-
|
19 |
-
local_files_only=False
|
20 |
-
)
|
21 |
-
model = WhisperForConditionalGeneration.from_pretrained(
|
22 |
-
"openai/whisper-tiny",
|
23 |
-
local_files_only=False,
|
24 |
-
low_cpu_mem_usage=True,
|
25 |
-
torch_dtype=torch.float32,
|
26 |
-
).to("cpu")
|
27 |
|
28 |
# Voice selection handling
|
29 |
async def get_valid_voice() -> str:
|
@@ -59,34 +49,20 @@ async def generate_speech(text: str) -> Optional[str]:
|
|
59 |
|
60 |
# Speech-to-text using Whisper
|
61 |
async def transcribe(audio_file: str) -> str:
|
62 |
-
|
63 |
-
audio_file,
|
64 |
-
|
65 |
-
mono=True,
|
66 |
-
duration=30
|
67 |
-
)
|
68 |
-
|
69 |
-
inputs = processor(
|
70 |
-
audio,
|
71 |
-
sampling_rate=sr,
|
72 |
-
return_tensors="pt",
|
73 |
-
return_attention_mask=True
|
74 |
-
).to(model.device)
|
75 |
-
|
76 |
-
with torch.no_grad():
|
77 |
-
generated_ids = model.generate(
|
78 |
-
input_features=inputs.input_features,
|
79 |
-
attention_mask=inputs.attention_mask,
|
80 |
-
language="en",
|
81 |
-
task="transcribe",
|
82 |
-
max_length=448,
|
83 |
-
temperature=0.0
|
84 |
-
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import logging
|
4 |
+
import requests
|
5 |
from typing import Optional
|
6 |
|
|
|
|
|
7 |
import edge_tts
|
|
|
8 |
|
9 |
+
from config.config import VOICE, FALLBACK_VOICES, token
|
10 |
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Whisper model for speech to text
|
15 |
+
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny"
|
16 |
+
headers = {"Authorization": f"Bearer {token}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Voice selection handling
|
19 |
async def get_valid_voice() -> str:
|
|
|
49 |
|
50 |
# Speech-to-text using Whisper
|
51 |
async def transcribe(audio_file: str) -> str:
|
52 |
+
try:
|
53 |
+
with open(audio_file, "rb") as f:
|
54 |
+
data = f.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
57 |
+
result = response.json()
|
58 |
+
|
59 |
+
if "text" in result:
|
60 |
+
transcription = result["text"].strip()
|
61 |
+
logger.info(f"Transcribed text: {transcription}")
|
62 |
+
return transcription
|
63 |
+
else:
|
64 |
+
raise ValueError("No transcription in response")
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
logger.error(f"Transcription error: {str(e)}")
|
68 |
+
raise RuntimeError(f"Failed to transcribe audio: {str(e)}")
|