Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
8 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
9 |
+
|
10 |
+
FACE_CLASS_INDEX = 1 # COCO class ID for 'person'
|
11 |
+
|
12 |
+
def detect_faces(img: Image.Image):
|
13 |
+
# Make a copy to draw on
|
14 |
+
img_draw = img.copy()
|
15 |
+
draw = ImageDraw.Draw(img_draw)
|
16 |
+
|
17 |
+
# Preprocess and predict
|
18 |
+
inputs = processor(images=img, return_tensors="pt")
|
19 |
+
outputs = model(**inputs)
|
20 |
+
|
21 |
+
# Get results
|
22 |
+
target_sizes = torch.tensor([img.size[::-1]])
|
23 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0]
|
24 |
+
|
25 |
+
count = 0
|
26 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
27 |
+
if label.item() == FACE_CLASS_INDEX:
|
28 |
+
count += 1
|
29 |
+
box = [round(i, 2) for i in box.tolist()]
|
30 |
+
draw.rectangle(box, outline="lime", width=3)
|
31 |
+
draw.text((box[0], box[1] - 10), f"{score:.2f}", fill="lime")
|
32 |
+
|
33 |
+
return img_draw, f"Total Persons Detected: {count}"
|
34 |
+
|
35 |
+
# Gradio Interface
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=detect_faces,
|
38 |
+
inputs=gr.Image(type="pil"),
|
39 |
+
outputs=[gr.Image(type="pil"), gr.Text()],
|
40 |
+
title="Person Detection with DETR",
|
41 |
+
description="Uses DETR model to detect people (class 1 - COCO dataset). Note: not specialized for face detection."
|
42 |
+
)
|
43 |
+
|
44 |
+
iface.launch()
|