Spaces:
Running
Running
import pandas as pd | |
import os | |
# Read the master CSV file | |
master_df = pd.read_csv('all_results.csv') | |
# Filter out rows where "success" is false | |
master_df = master_df[master_df['success']] | |
# Get unique model names | |
model_names = master_df['cfg_model_name'].unique() | |
model_names_short = [model_name.split('/')[-1] for model_name in model_names] | |
# keep unique model names | |
model_names = list(set(model_names_short)) | |
# Create a directory to store the new CSV files | |
output_dir = 'model_csvs' | |
os.makedirs(output_dir, exist_ok=True) | |
# Specify the columns to keep | |
columns_to_keep = ['num_free_tokens', 'target_str', 'target_length', 'optimal_prompt', 'ratio', 'memorized'] | |
# Iterate over each model name and create a new CSV file | |
for model_name in model_names: | |
# Filter the DataFrame for the current model by checking if short name of config exactly matches | |
# get the short name of the master_df['cfg_model_name'] with lambda function | |
model_df = master_df[master_df['cfg_model_name'].apply(lambda x: x.split('/')[-1] == model_name)] | |
# Select the specified columns | |
model_df = model_df[columns_to_keep] | |
# Save the DataFrame to a new CSV file | |
output_path = os.path.join(output_dir, f'{model_name}.csv') | |
model_df.to_csv(output_path, index=False) | |
print("CSV files created successfully.") |