pravin0077 commited on
Commit
48c1712
·
verified ·
1 Parent(s): 93fee0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -69
app.py CHANGED
@@ -14,98 +14,80 @@ if hf_token is None:
14
  # Login to Hugging Face
15
  login(token=hf_token)
16
 
17
- # Define language codes for around 10 languages
18
- language_codes = {
19
- "French": "fr",
20
- "Spanish": "es",
21
- "German": "de",
22
- "Tamil": "ta",
23
- "Hindi": "hi",
24
- "Chinese": "zh",
25
- "Russian": "ru",
26
- "Japanese": "ja",
27
- "Korean": "ko",
28
- "Arabic": "ar",
29
- "Portuguese": "pt",
30
- "Italian": "it"
31
  }
32
 
33
- model_name = "Helsinki-NLP/opus-mt-mul-en"
34
- tokenizer = MarianTokenizer.from_pretrained(model_name)
35
- model = MarianMTModel.from_pretrained(model_name)
36
- translator = pipeline("translation", model=model, tokenizer=tokenizer)
 
 
 
 
 
37
 
38
- # Function for translation
39
- def translate_text(input_text, src_lang):
40
- try:
41
- src_prefix = f">>{src_lang}<< " + input_text
42
- translation = translator(src_prefix, max_length=40)
43
- translated_text = translation[0]['translation_text']
44
- return translated_text
45
- except Exception as e:
46
- return f"An error occurred: {str(e)}"
47
-
48
- # API credentials and endpoint for FLUX
49
  flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
50
  flux_headers = {"Authorization": f"Bearer {hf_token}"}
51
 
52
- # Function to generate image based on prompt
53
- def generate_image(prompt):
54
  try:
55
- response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": prompt})
56
- if response.status_code == 200:
57
- image_bytes = response.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  image = Image.open(io.BytesIO(image_bytes))
59
- return image
60
  else:
61
- print(f"Failed to get image: Status code {response.status_code}")
62
- return None
63
- except Exception as e:
64
- print(f"An error occurred: {e}")
65
- return None
66
 
67
- # API setup for Mistral model
68
- mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
69
- mistral_headers = {"Authorization": f"Bearer {hf_token}"}
70
 
71
- def generate_creative_text(translated_text):
72
- try:
73
- response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text})
74
- if response.status_code == 200:
75
- creative_text = response.json()[0]['generated_text']
76
- return creative_text
77
- else:
78
- return "Error generating creative text"
79
  except Exception as e:
80
- return f"An error occurred: {str(e)}"
81
-
82
- # Main function to handle full workflow
83
- def translate_generate_image_and_text(input_text, src_lang):
84
- # Step 1: Translate input text
85
- translated_text = translate_text(input_text, language_codes[src_lang])
86
-
87
- # Step 2: Generate an image
88
- image = generate_image(translated_text)
89
-
90
- # Step 3: Generate creative text based on the translation
91
- creative_text = generate_creative_text(translated_text)
92
-
93
- return translated_text, creative_text, image
94
 
95
- # Gradio interface
96
  interface = gr.Interface(
97
  fn=translate_generate_image_and_text,
98
  inputs=[
99
  gr.Textbox(label="Enter text for translation"),
100
- gr.Dropdown(choices=list(language_codes.keys()), label="Source Language")
101
  ],
102
  outputs=[
103
  gr.Textbox(label="Translated Text"),
104
  gr.Textbox(label="Creative Text"),
105
  gr.Image(label="Generated Image")
106
  ],
107
- title="Multilingual Translation, Image, and Creative Text Generator",
108
- description="Translates text from multiple languages to English, generates images, and creates creative text."
109
  )
110
 
111
  # Launch the Gradio app
 
14
  # Login to Hugging Face
15
  login(token=hf_token)
16
 
17
+ # Define models for specific languages
18
+ language_models = {
19
+ "fra": "Helsinki-NLP/opus-mt-fr-en",
20
+ "spa": "Helsinki-NLP/opus-mt-es-en",
21
+ "tam": "Helsinki-NLP/opus-mt-tam-en",
22
+ "deu": "Helsinki-NLP/opus-mt-de-en",
23
+ "jpn": "Helsinki-NLP/opus-mt-ja-en",
24
+ "rus": "Helsinki-NLP/opus-mt-ru-en",
25
+ "kor": "Helsinki-NLP/opus-mt-ko-en",
26
+ "hin": "Helsinki-NLP/opus-mt-hi-en",
27
+ "ita": "Helsinki-NLP/opus-mt-it-en",
28
+ "por": "Helsinki-NLP/opus-mt-pt-en"
29
+ # Add more language models as needed
 
30
  }
31
 
32
+ # Function to get translator pipeline for specific language
33
+ def get_translator(language_code):
34
+ model_name = language_models.get(language_code)
35
+ if model_name:
36
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
37
+ model = MarianMTModel.from_pretrained(model_name)
38
+ return pipeline("translation", model=model, tokenizer=tokenizer)
39
+ else:
40
+ raise ValueError(f"No translation model found for language code '{language_code}'.")
41
 
42
+ # FLUX model API settings
 
 
 
 
 
 
 
 
 
 
43
  flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
44
  flux_headers = {"Authorization": f"Bearer {hf_token}"}
45
 
46
+ # Function for translation, creative text generation, and image creation
47
+ def translate_generate_image_and_text(input_text, src_lang_code):
48
  try:
49
+ # Step 1: Get translator and translate text
50
+ translator = get_translator(src_lang_code)
51
+ translation = translator(input_text, max_length=40)
52
+ translated_text = translation[0]['translation_text']
53
+
54
+ # Step 2: Generate creative text with Mistral model
55
+ mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
56
+ mistral_headers = {"Authorization": f"Bearer {hf_token}"}
57
+ mistral_response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text})
58
+
59
+ if mistral_response.status_code == 200:
60
+ creative_text = mistral_response.json()[0]['generated_text']
61
+ else:
62
+ creative_text = "Error generating creative text"
63
+
64
+ # Step 3: Generate an image with FLUX model
65
+ flux_response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": creative_text})
66
+ if flux_response.status_code == 200:
67
+ image_bytes = flux_response.content
68
  image = Image.open(io.BytesIO(image_bytes))
 
69
  else:
70
+ image = None
 
 
 
 
71
 
72
+ return translated_text, creative_text, image
 
 
73
 
 
 
 
 
 
 
 
 
74
  except Exception as e:
75
+ return f"An error occurred: {str(e)}", None, None
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
+ # Gradio interface setup
78
  interface = gr.Interface(
79
  fn=translate_generate_image_and_text,
80
  inputs=[
81
  gr.Textbox(label="Enter text for translation"),
82
+ gr.Textbox(label="Source Language Code", placeholder="e.g., 'fra' for French, 'spa' for Spanish")
83
  ],
84
  outputs=[
85
  gr.Textbox(label="Translated Text"),
86
  gr.Textbox(label="Creative Text"),
87
  gr.Image(label="Generated Image")
88
  ],
89
+ title="Multilingual Translation, Creative Content, and Image Generator",
90
+ description="Select a language and translate text to English, generate creative content, and produce an image."
91
  )
92
 
93
  # Launch the Gradio app