predpoint commited on
Commit
feb85a1
·
1 Parent(s): 00a4098

Upload 13 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model/clf_model.sav filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append('.')
3
+
4
+ from flask import Flask, request, jsonify
5
+ from time import gmtime, strftime
6
+ import os
7
+ import base64
8
+ import json
9
+ import cv2
10
+ import numpy as np
11
+
12
+ from tensorflow.keras.preprocessing import image
13
+ from keras_facenet import FaceNet
14
+ import pickle
15
+
16
+ # create a facenet model
17
+ embedding_model = FaceNet(key = '20180402-114759',
18
+ use_prebuilt=True,
19
+ cache_folder= os.path.abspath(os.path.dirname(__file__)) + '/facenet_weights').model
20
+
21
+ clf_model = pickle.load(open(os.path.abspath(os.path.dirname(__file__)) + '/model/clf_mode.sav', 'rb'))
22
+
23
+ target_shape = (160, 160)
24
+
25
+ app = Flask(__name__)
26
+
27
+ app.config['SITE'] = "http://0.0.0.0:8000/"
28
+ app.config['DEBUG'] = False
29
+
30
+ @app.route('/api/detect_human_face', methods=['POST'])
31
+ def detect_human_face():
32
+ file1 = request.files['image1']
33
+ image1 = cv2.imdecode(np.fromstring(file1.read(), np.uint8), cv2.IMREAD_COLOR)
34
+ if image1 is None:
35
+ result = "image1: is null!"
36
+ status = "ok"
37
+ response = jsonify({"status": status, "data": {"result": result}})
38
+ response.status_code = 200
39
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
40
+ return response
41
+
42
+ X = np.float32([(np.float32(image1) - 127.5) / 127.5])
43
+ X_ft = embedding_model.predict(X, batch_size=1)
44
+ anomaly_score = clf_model.decision_function(X_ft) * -1
45
+
46
+ if anomaly_score > 1:
47
+ result = "Not Human"
48
+ else:
49
+ result = "Human"
50
+
51
+ status = "ok"
52
+ response = jsonify(
53
+ {
54
+ "status": status,
55
+ "data": {
56
+ "result": result,
57
+ "anomaly_score": float(anomaly_score)
58
+ }
59
+ })
60
+
61
+ response.status_code = 200
62
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
63
+ return response
64
+
65
+ if __name__ == '__main__':
66
+ port = int(os.environ.get("PORT", 8000))
67
+ app.run(host='0.0.0.0', port=port)
facenet_weights/.DS_Store ADDED
Binary file (6.15 kB). View file
 
facenet_weights/20180402-114759/20180402-114759-weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b71e7045497e841c00ee568f031d1a4d30908fceadf6884aef2dec4d545202b
3
+ size 94952520
gradio/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gradio/demo.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import json
4
+ from PIL import Image
5
+
6
+ def detect_human_face(frame1):
7
+ url = "http://127.0.0.1:8000/api/detect_human_face"
8
+ files = {'image1': open(frame1, 'rb')}
9
+
10
+ r = requests.post(url=url, files=files)
11
+
12
+ return [r.json()]
13
+
14
+ with gr.Blocks() as demo:
15
+
16
+ with gr.Row():
17
+ with gr.Column():
18
+ face_input = gr.Image(type='filepath', height=480)
19
+ gr.Examples(['gradio/examples/Human.jpg', 'gradio/examples/NotHuman.jpg'],
20
+ inputs=face_input)
21
+ detect_human_face_button = gr.Button("Detect Human Face")
22
+ with gr.Column():
23
+ detect_result_output = gr.JSON(label='Result')
24
+
25
+ detect_human_face_button.click(detect_human_face, inputs=[face_input], outputs=[detect_result_output])
26
+
27
+ demo.launch(server_name="0.0.0.0", server_port=7860)
gradio/examples/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gradio/examples/Human.jpg ADDED
gradio/examples/NotHuman.jpg ADDED
model/.DS_Store ADDED
Binary file (6.15 kB). View file
 
model/clf_model.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70ce774d1a9c411caf3d932bab867278df8e5e31b7753755dc3211e665086aae
3
+ size 8450201
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ flask
2
+ flask-cors
3
+ gradio
4
+ opencv-python
5
+ numpy==1.20.3
6
+ pillow
7
+ pickle
8
+ keras-facenet
run.sh ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ exec python3 app.py &
4
+ exec python3 gradio/demo.py