Revert to asr_pipeline
Browse files
app.py
CHANGED
@@ -3,42 +3,25 @@ import librosa
|
|
3 |
import logging
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from datasets import load_dataset
|
7 |
|
8 |
-
from transformers import VitsModel, VitsTokenizer
|
9 |
-
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
10 |
|
11 |
|
12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
-
target_language = "
|
|
|
15 |
# load speech translation checkpoint
|
16 |
-
|
17 |
-
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
18 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
19 |
-
decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe")
|
20 |
|
21 |
-
# load text-to-speech checkpoint
|
22 |
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
23 |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
def translate(audio):
|
29 |
-
|
30 |
-
|
31 |
-
audio = {
|
32 |
-
"path": audio,
|
33 |
-
"sampling_rate": 16_000,
|
34 |
-
"array": librosa.load(audio, sr=16_000)[0]
|
35 |
-
}
|
36 |
-
elif audio["sampling_rate"] != 16_000:
|
37 |
-
audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000)
|
38 |
-
input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
|
39 |
-
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids)
|
40 |
-
translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
41 |
-
return translated_text
|
42 |
|
43 |
|
44 |
def synthesise(text):
|
@@ -88,4 +71,4 @@ with demo:
|
|
88 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
89 |
|
90 |
logging.getLogger().setLevel(logging.INFO)
|
91 |
-
demo.launch()
|
|
|
3 |
import logging
|
4 |
import numpy as np
|
5 |
import torch
|
|
|
6 |
|
7 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
|
|
8 |
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
target_language = "fr"
|
13 |
+
|
14 |
# load speech translation checkpoint
|
15 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
|
|
|
|
|
|
16 |
|
17 |
+
# load text-to-speech checkpoint
|
18 |
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
19 |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
|
20 |
|
21 |
|
|
|
|
|
22 |
def translate(audio):
|
23 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": target_language})
|
24 |
+
return outputs["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def synthesise(text):
|
|
|
71 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
72 |
|
73 |
logging.getLogger().setLevel(logging.INFO)
|
74 |
+
demo.launch()
|