Preeti Dave commited on
Commit
7cbd5ba
·
1 Parent(s): 7e12507
Files changed (1) hide show
  1. app.py +27 -4
app.py CHANGED
@@ -1,7 +1,30 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer from the Hugging Face Hub
6
+ model = AutoModelForSequenceClassification.from_pretrained("preetidav/my_model")
7
+ tokenizer = AutoTokenizer.from_pretrained("preetidav/my_model")
8
 
9
+ # Function to predict sentiment
10
+ def predict_sentiment(text):
11
+ # Tokenize the input text
12
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
13
+ # Forward pass through the model
14
+ outputs = model(**inputs)
15
+ # Get the prediction (0 or 1 for binary classification)
16
+ prediction = torch.argmax(outputs.logits, dim=1).item()
17
+ # Map prediction to sentiment labels
18
+ return "positive" if prediction == 1 else "negative"
19
+
20
+ # Set up the Gradio interface
21
+ iface = gr.Interface(
22
+ fn=predict_sentiment, # Function to call
23
+ inputs=gr.Textbox(label="Input Text"), # Input field for the text
24
+ outputs=gr.Textbox(label="Sentiment"), # Output field for the sentiment
25
+ title="Sentiment Analysis Model", # Title of the app
26
+ description="This model predicts whether a given text has positive or negative sentiment.", # Description of the app
27
+ )
28
+
29
+ # Launch the app
30
+ iface.launch()