import gradio as gr from transformers import pipeline # Load pre-trained model for CoLA (linguistic acceptability) model_name = "sentence-transformers/all-MiniLM-L6-v2" classifier = pipeline("text-classification", model=model_name) def classify_sentence(sentence): result = classifier(sentence)[0] return f"Label: {result['label']} (Confidence: {result['score']:.2f})" # Create Gradio interface iface = gr.Interface( fn=classify_sentence, inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."), outputs="text", title="Sentence Acceptability Classifier", description="This model classifies whether a sentence is linguistically acceptable (LABEL_1) or not (LABEL_0).", ) # Launch app iface.launch()