import gradio as gr import transformers from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load the model and tokenizer from the Hugging Face Hub model = AutoModelForSequenceClassification.from_pretrained("preetidav/sentomodel") tokenizer = AutoTokenizer.from_pretrained("preetidav/sentomodel") # Function to predict sentiment def predict_sentiment(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Forward pass through the model outputs = model(**inputs) # Get the prediction (0 or 1 for binary classification) prediction = torch.argmax(outputs.logits, dim=1).item() # Map prediction to sentiment labels return "positive" if prediction == 1 else "negative" # Set up the Gradio interface iface = gr.Interface( fn=predict_sentiment, # Function to call inputs=gr.Textbox(label="Input Text"), # Input field for the text outputs=gr.Textbox(label="Sentiment"), # Output field for the sentiment title="Sentiment Analysis Model", # Title of the app description="This model predicts whether a given text has positive or negative sentiment.", # Description of the app ) # Launch the app iface.launch()