prekrasnypok commited on
Commit
a598796
·
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -19
app.py CHANGED
@@ -1,3 +1,7 @@
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
@@ -8,43 +12,51 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
 
 
23
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
 
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
 
41
 
42
- title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
50
  demo = gr.Blocks()
@@ -61,12 +73,11 @@ file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
68
 
69
  with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
  demo.launch()
 
1
+ """Pronkin_hw_task3.ipynb
2
+ https://colab.research.google.com/drive/149j9u-wsD3GiEwRA8clBrXQ8bh5DRk7I?usp=sharing
3
+ """
4
+
5
  import gradio as gr
6
  import numpy as np
7
  import torch
 
12
 
13
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
 
15
+ asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
16
+
17
+ processor = WhisperProcessor.from_pretrained("openai/whisper-small")
18
+
19
+ translator_1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
20
+ translator_2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
21
 
 
 
22
 
23
+ model = VitsModel.from_pretrained("facebook/mms-tts-rus")
24
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
25
 
 
 
26
 
27
+ def translator_mul_ru(text):
28
+
29
+ translation = translator_2(translator_1(text)[0]['translation_text'])
30
+ return translation[0]['translation_text']
31
 
32
  def translate(audio):
33
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
34
  return outputs["text"]
35
 
 
36
  def synthesise(text):
37
+ translated_text = translator_mul_ru(text)
38
+ inputs = tokenizer(translated_text, return_tensors="pt")
39
+ input_ids = inputs["input_ids"]
40
+
41
+ with torch.no_grad():
42
+ outputs = model(input_ids)
43
+ speech = outputs["waveform"]
44
  return speech.cpu()
45
 
46
 
47
  def speech_to_speech_translation(audio):
48
  translated_text = translate(audio)
49
+ print(translated_text)
50
  synthesised_speech = synthesise(translated_text)
51
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
52
+ return 16000, synthesised_speech[0]
53
 
54
 
55
+ title = "Pronkin custom STST"
56
  description = """
57
+ * ASR-модель распознает речь с помощью voidful/wav2vec2-xlsr-multilingual-56 и возвращает текст на любом из 56 языков.
58
+ * Перевод текста с любого на английский с помощью модели Helsinki-NLP/opus-mt-mul-en, с английского на русский - Helsinki-NLP/opus-mt-en-ru
59
+ * Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
 
60
  """
61
 
62
  demo = gr.Blocks()
 
73
  fn=speech_to_speech_translation,
74
  inputs=gr.Audio(source="upload", type="filepath"),
75
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
 
76
  title=title,
77
  description=description,
78
  )
79
 
80
  with demo:
81
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
82
 
83
  demo.launch()