Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from huggingface_hub import InferenceClient | |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN) | |
def respond(message): | |
for response in client.chat_completion(messages=[{"role": "user", "content": message}]): | |
yield response["choices"][0]["message"]["content"] | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
import os | |
from transformers import AutoModelForCasualLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
if not api_token: | |
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
raise ValueError("β ERROR: Hugging Face API token is not set. Please set it as an environment variable.") | |
# Define model names | |
base_model_name = "mistralai/Mistral-7B-Instruct-v0.3" | |
peft_model_name = "prempranavreddy/MP1" | |
# Load base model with authentication | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
use_auth_token=api_token # β Correct | |
) | |
# Load fine-tuned model | |
model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token) |