File size: 10,200 Bytes
0f67148 c2aa692 895bc99 0f67148 1336bb0 0f67148 eb9492e 0f67148 eb9492e 0f67148 895bc99 0f67148 895bc99 0f67148 895bc99 0f67148 895bc99 0f67148 895bc99 fcd5d1f 895bc99 0ba7a71 0f67148 cbefb6b 0f67148 cbefb6b 0f67148 895bc99 bd35a11 895bc99 0f67148 895bc99 0f67148 895bc99 0f67148 eb9492e 0f67148 ea35432 c88fcb6 cbefb6b 7e99bfa cbefb6b 7e99bfa 4eb0fdc 7e99bfa cbefb6b 7e99bfa f2d5ec7 cbefb6b c88fcb6 cbefb6b 7e99bfa cbefb6b c88fcb6 568c379 469e2ef 637989e 7221031 637989e 7221031 637989e bd5da1e 637989e 7e99bfa b70d541 6eca406 a841321 7e99bfa c5377d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import nltk
import re
import nltkmodule
from newspaper import Article
from newspaper import fulltext
import requests
from nltk.tokenize import word_tokenize
from sentence_transformers import SentenceTransformer, models, losses, LoggingHandler
import pandas as pd
import numpy as np
from torch.utils.data import DataLoader
import math
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
from nltk.tokenize import sent_tokenize
import scispacy
import en_core_sci_lg
import string
import gradio as gr
import inflect
inflect_op = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words
def remove_stopwords(sen):
sen_new = " ".join([i for i in sen if i not in stop_words])
return sen_new
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
element=[]
final_textrank_list=[]
document=[]
text_doc=[]
score_list=[]
sum_list=[]
model_1 = SentenceTransformer(model_1)
model_2 = SentenceTransformer(model_2)
url = article_link
html = requests.get(url).text
article = fulltext(html)
corpus=sent_tokenize(article)
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
'indicated that','suggested that','demonstrated that']
count_dict={}
for l in corpus:
c=0
for l2 in indicator_list:
if l.find(l2)!=-1: ### then it is a substring
c=1
break
if c:#
count_dict[l]=1
else:
count_dict[l]=0
for sent, score in count_dict.items():
score_list.append(score)
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
corpus_embeddings = model_1.encode(clean_sentences_new)
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
for i in range(len(clean_sentences_new)):
len_embeddings=(len(corpus_embeddings[i]))
for j in range(len(clean_sentences_new)):
if i != j:
if(len_embeddings == 1024):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
elif(len_embeddings == 768):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph)
sentences=((scores[i],s) for i,s in enumerate(corpus))
for elem in sentences:
element.append(elem[0])
for sc, lst in zip(score_list, element): ########### taking the scores from both the lists
sum1=sc+lst
sum_list.append(sum1)
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
for elem in x:
final_textrank_list.append(elem[1])
a=int((10*len(final_textrank_list))/100.0)
if(a<5):
total=5
else:
total=int(a)
for i in range(total):
document.append(final_textrank_list[i])
doc=" ".join(document)
for i in document:
doc_1=nlp(i)
text_doc.append([X.text for X in doc_1.ents])
entity_list = [item for sublist in text_doc for item in sublist]
entity_list = [word for word in entity_list if not word in all_stopwords]
entity_list = [word_entity for word_entity in entity_list if(inflect_op.singular_noun(word_entity) == False)]
entity_list=list(dict.fromkeys(entity_list))
doc_embedding = model_2.encode([doc])
candidates=entity_list
candidate_embeddings = model_2.encode(candidates)
distances = cosine_similarity(doc_embedding, candidate_embeddings)
top_n = max_num_keywords
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
keywords = '\n'.join(keyword_list)
return keywords
igen=gr.Interface(keyphrase_generator,
inputs=[gr.components.Textbox(lines=1, placeholder="Provide an online health article web link here",default="", label="Article web link"),
gr.components.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/gtr-t5-large',
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/stsb-mpnet-base-v2',
'sentence-transformers/all-roberta-large-v1',
'sentence-transformers/stsb-roberta-base-v2',
'sentence-transformers/stsb-distilroberta-base-v2',
'sentence-transformers/sentence-t5-large',
'sentence-transformers/sentence-t5-base'],
type="value",
default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
label="Select any SBERT model for TextRank from the list below"),
gr.components.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-distilroberta-base-v1',
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'sentence-transformers/paraphrase-albert-small-v2',
'sentence-transformers/paraphrase-albert-base-v2',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
'sentence-transformers/paraphrase-MiniLM-L6-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
'sentence-transformers/paraphrase-MiniLM-L3-v2',
'sentence-transformers/all-MiniLM-L6-v2'],
type="value",
default='sentence-transformers/all-mpnet-base-v1',
label="Select any SBERT model for keyphrases from the list below"),
gr.components.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
outputs=gr.outputs.Textbox(type="text", label="Output"), theme="peach",
title="Health Article Keyphrase Generator",
description="Generates the keyphrases from an online health article which best describes the article. ", #Examples are provided below for demo purposes. Choose any one example to see the results. ",
#examples=[
# ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
# 'sentence-transformers/all-mpnet-base-v1',
# 'sentence-transformers/paraphrase-MiniLM-L12-v2',
# 10],
# ["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
# 'sentence-transformers/all-mpnet-base-v1',
# 'sentence-transformers/all-mpnet-base-v1',
# 12],
# ["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
# 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
# 'sentence-transformers/all-mpnet-base-v1',
# 10],
# ["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
# 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
# 'sentence-transformers/all-mpnet-base-v1',
# 15]
# ],
article= "The work is based on a part of the paper provided <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>here</a>."
"\t It uses the TextRank algorithm with <a href=https://www.sbert.net/>SBERT</a> to first find the top ranked sentences and then extracts the keyphrases"
"\t from those sentences using <a href = https://allenai.github.io/scispacy/>scispaCy</a> and SBERT."
"\t The list of SBERT models provided can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
"\t The default model names are provided which can be changed from the list of models available. "
"\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
igen.launch(share=False)
#### |