Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -75,12 +75,12 @@ def orthogonalize_matrix(matrix, vec, weight):
|
|
75 |
# --- Streamlit UI ---
|
76 |
|
77 |
st.title("LLM Auto Abliteration")
|
78 |
-
st.markdown("🥠Recommended
|
79 |
-
st.markdown("🥠
|
80 |
-
st.markdown("🥠This app allows you to manually input parameters to modify a language model's behavior by abliterating its weights.")
|
81 |
-
st.markdown("📍Credits: Thanks to **[Maxime Labonne](https://huggingface.co/mlabonne)**")
|
82 |
|
83 |
-
# Debugging window
|
84 |
debug_log = []
|
85 |
debug_placeholder = st.empty()
|
86 |
def update_debug(msg):
|
@@ -132,14 +132,20 @@ if st.button("Run Abliteration"):
|
|
132 |
|
133 |
with st.spinner("Loading model..."):
|
134 |
try:
|
|
|
135 |
model = AutoModelForCausalLM.from_pretrained(
|
136 |
MODEL_ID,
|
137 |
device_map="auto",
|
138 |
torch_dtype=torch_dtype,
|
139 |
attn_implementation=attn_implementation,
|
140 |
-
trust_remote_code=True
|
|
|
141 |
).eval()
|
142 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
143 |
update_debug("Model and tokenizer loaded successfully.")
|
144 |
except Exception as e:
|
145 |
update_debug(f"Error loading model: {e}")
|
@@ -252,17 +258,16 @@ if st.button("Run Abliteration"):
|
|
252 |
st.text_area("Response after abliteration:", response_after, height=150)
|
253 |
update_debug("Generated response after abliteration.")
|
254 |
|
255 |
-
st.write("###
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
update_debug(f"Error while pushing model: {e}")
|
266 |
|
267 |
st.success("Abliteration process complete!")
|
268 |
update_debug("Abliteration process complete.")
|
|
|
75 |
# --- Streamlit UI ---
|
76 |
|
77 |
st.title("LLM Auto Abliteration")
|
78 |
+
st.markdown("🥠 Recommended for edge-device LLMs (e.g., 1B, 1.5B, 0.5B).")
|
79 |
+
st.markdown("🥠 Duplicate the space for seamless usage!")
|
80 |
+
st.markdown("🥠 This app allows you to manually input parameters to modify a language model's behavior by abliterating its weights.")
|
81 |
+
st.markdown("📍 Credits: Thanks to **[Maxime Labonne](https://huggingface.co/mlabonne)**")
|
82 |
|
83 |
+
# Debugging window to show log messages
|
84 |
debug_log = []
|
85 |
debug_placeholder = st.empty()
|
86 |
def update_debug(msg):
|
|
|
132 |
|
133 |
with st.spinner("Loading model..."):
|
134 |
try:
|
135 |
+
# Pass HF token if provided to load private or restricted models
|
136 |
model = AutoModelForCausalLM.from_pretrained(
|
137 |
MODEL_ID,
|
138 |
device_map="auto",
|
139 |
torch_dtype=torch_dtype,
|
140 |
attn_implementation=attn_implementation,
|
141 |
+
trust_remote_code=True,
|
142 |
+
use_auth_token=hf_token if hf_token else None
|
143 |
).eval()
|
144 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
145 |
+
MODEL_ID,
|
146 |
+
trust_remote_code=True,
|
147 |
+
use_auth_token=hf_token if hf_token else None
|
148 |
+
)
|
149 |
update_debug("Model and tokenizer loaded successfully.")
|
150 |
except Exception as e:
|
151 |
update_debug(f"Error loading model: {e}")
|
|
|
258 |
st.text_area("Response after abliteration:", response_after, height=150)
|
259 |
update_debug("Generated response after abliteration.")
|
260 |
|
261 |
+
st.write("### Pushing Model to Hugging Face Hub")
|
262 |
+
try:
|
263 |
+
model_name = MODEL_ID.split("/")[-1] + "-abliterated"
|
264 |
+
model.push_to_hub(model_name, private=PRIVATE_UPLOAD)
|
265 |
+
tokenizer.push_to_hub(model_name, private=PRIVATE_UPLOAD)
|
266 |
+
st.success(f"Model automatically pushed as {model_name}")
|
267 |
+
update_debug(f"Model automatically pushed to HF Hub as {model_name}.")
|
268 |
+
except Exception as e:
|
269 |
+
st.error(f"Error while pushing model: {e}")
|
270 |
+
update_debug(f"Error while pushing model: {e}")
|
|
|
271 |
|
272 |
st.success("Abliteration process complete!")
|
273 |
update_debug("Abliteration process complete.")
|