Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,980 Bytes
e14e6d1 c6a1ef4 e14e6d1 c6a1ef4 ec8d7fa a85c4cf ec8d7fa 221d2b6 b3a3e40 ec8d7fa c6a1ef4 ec8d7fa c6a1ef4 ec8d7fa c6a1ef4 e412787 5e0feb4 c6a1ef4 ec8d7fa 9e55e35 c6a1ef4 9e55e35 1590f58 9e55e35 f87c07a 9e55e35 ec8d7fa 1590f58 2204cce f11c1e8 1590f58 ec8d7fa c6a1ef4 53342b7 c6a1ef4 ec8d7fa c6a1ef4 ec8d7fa bae4d72 c6a1ef4 ec8d7fa c6a1ef4 9e55e35 c6a1ef4 ec8d7fa c6a1ef4 ec8d7fa ec94f98 9e55e35 1d9dc27 c6a1ef4 9e55e35 c6a1ef4 9e55e35 f87c07a 9e55e35 40b4f90 1590f58 9e55e35 1d9dc27 c6a1ef4 ec8d7fa 1d9dc27 83c1dff 1d9dc27 1590f58 1d9dc27 9e55e35 1d9dc27 c6a1ef4 1d9dc27 9e55e35 1d9dc27 9e55e35 1d9dc27 9e55e35 f87c07a 9e55e35 40b4f90 1590f58 9e55e35 1d9dc27 c6a1ef4 1d9dc27 83c1dff 1d9dc27 83c1dff 1d9dc27 1590f58 1d9dc27 9e55e35 1d9dc27 ec8d7fa fa728b7 10dcd42 6bf88e9 fa728b7 ff5cc66 fa728b7 47dfd6a c6a1ef4 47dfd6a f11c1e8 c6a1ef4 1d9dc27 11e7c4e 09f3d9e 47dfd6a fa728b7 1d9dc27 11e7c4e 09f3d9e 47dfd6a fa728b7 1d9dc27 c6a1ef4 eb23b83 2ed1dcd 81034fe 23c8dfa 1590f58 ca69edf 07f1341 a3f5962 43925bb 1d9dc27 9e55e35 1d9dc27 9e55e35 c6a1ef4 8110123 81034fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Cosmos-Reason1-7B
MODEL_ID_M = "nvidia/Cosmos-Reason1-7B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load DocScope
MODEL_ID_X = "prithivMLmods/docscopeOCR-7B-050425-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Relaxed
MODEL_ID_Z = "Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Z,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Cosmos-Reason1-7B":
processor = processor_m
model = model_m
elif model_name == "docscopeOCR-7B-050425-exp":
processor = processor_x
model = model_x
elif model_name == "Captioner-7B":
processor = processor_z
model = model_z
else:
yield "Invalid model selected."
return
if image is None:
yield "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Cosmos-Reason1-7B":
processor = processor_m
model = model_m
elif model_name == "docscopeOCR-7B-050425-exp":
processor = processor_x
model = model_x
elif model_name == "Captioner-7B":
processor = processor_z
model = model_z
else:
yield "Invalid model selected."
return
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Define examples for image and video inference
image_examples = [
["Perform OCR on the text in the image.", "images/1.jpg"],
["Explain the scene in detail.", "images/2.jpg"]
]
video_examples = [
["Explain the Ad in Detail", "videos/1.mp4"],
["Identify the main actions in the video", "videos/2.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **DocScope-R1**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
model_choice = gr.Radio(
choices=["Cosmos-Reason1-7B", "docscopeOCR-7B-050425-exp", "Captioner-7B"],
label="Select Model",
value="Cosmos-Reason1-7B"
)
gr.Markdown("**Model Info**")
gr.Markdown("⤷ [Cosmos-Reason1-7B](https://huggingface.co/nvidia/Cosmos-Reason1-7B): understand physical common sense and generate appropriate embodied decisions.")
gr.Markdown("⤷ [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): optimized for document-level optical character recognition, long-context vision-language understanding.")
gr.Markdown("⤷ [Captioner-Relaxed-7B](https://huggingface.co/Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed): build with hand-curated dataset for text-to-image models, providing significantly more detailed descriptions or captions of given images.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |