File size: 9,980 Bytes
e14e6d1
c6a1ef4
e14e6d1
c6a1ef4
ec8d7fa
 
 
 
a85c4cf
ec8d7fa
 
221d2b6
b3a3e40
ec8d7fa
 
 
 
 
c6a1ef4
ec8d7fa
c6a1ef4
ec8d7fa
c6a1ef4
e412787
 
5e0feb4
c6a1ef4
ec8d7fa
 
9e55e35
 
 
c6a1ef4
9e55e35
 
 
1590f58
9e55e35
f87c07a
 
9e55e35
 
 
ec8d7fa
 
1590f58
 
2204cce
f11c1e8
1590f58
 
 
 
 
 
ec8d7fa
c6a1ef4
 
53342b7
c6a1ef4
 
ec8d7fa
c6a1ef4
ec8d7fa
 
bae4d72
c6a1ef4
ec8d7fa
c6a1ef4
 
9e55e35
c6a1ef4
ec8d7fa
c6a1ef4
ec8d7fa
 
 
ec94f98
9e55e35
1d9dc27
 
 
 
 
c6a1ef4
9e55e35
c6a1ef4
9e55e35
 
 
f87c07a
9e55e35
 
40b4f90
1590f58
 
9e55e35
 
 
 
1d9dc27
 
c6a1ef4
ec8d7fa
1d9dc27
 
 
 
 
 
 
 
 
 
 
 
83c1dff
 
1d9dc27
1590f58
1d9dc27
 
9e55e35
1d9dc27
 
 
 
 
 
c6a1ef4
1d9dc27
9e55e35
1d9dc27
 
 
 
 
 
9e55e35
1d9dc27
9e55e35
 
 
f87c07a
9e55e35
 
40b4f90
1590f58
 
9e55e35
 
 
 
1d9dc27
 
c6a1ef4
 
1d9dc27
 
 
 
 
83c1dff
 
1d9dc27
 
 
 
 
 
 
 
83c1dff
1d9dc27
1590f58
1d9dc27
 
 
 
 
 
 
 
 
 
 
9e55e35
1d9dc27
 
 
 
 
 
ec8d7fa
fa728b7
 
10dcd42
6bf88e9
fa728b7
 
 
ff5cc66
 
fa728b7
 
47dfd6a
 
 
 
 
 
 
 
 
 
c6a1ef4
47dfd6a
f11c1e8
c6a1ef4
 
1d9dc27
 
11e7c4e
09f3d9e
47dfd6a
fa728b7
 
 
 
1d9dc27
11e7c4e
09f3d9e
47dfd6a
fa728b7
 
 
 
1d9dc27
 
 
 
 
 
c6a1ef4
eb23b83
2ed1dcd
81034fe
23c8dfa
1590f58
 
ca69edf
07f1341
a3f5962
 
 
43925bb
1d9dc27
 
9e55e35
1d9dc27
 
 
 
9e55e35
c6a1ef4
8110123
 
 
81034fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Cosmos-Reason1-7B
MODEL_ID_M = "nvidia/Cosmos-Reason1-7B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load DocScope
MODEL_ID_X = "prithivMLmods/docscopeOCR-7B-050425-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Relaxed
MODEL_ID_Z = "Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Z,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "Cosmos-Reason1-7B":
        processor = processor_m
        model = model_m
    elif model_name == "docscopeOCR-7B-050425-exp":
        processor = processor_x
        model = model_x
    elif model_name == "Captioner-7B":
        processor = processor_z
        model = model_z
    else:
        yield "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "Cosmos-Reason1-7B":
        processor = processor_m
        model = model_m
    elif model_name == "docscopeOCR-7B-050425-exp":
        processor = processor_x
        model = model_x
    elif model_name == "Captioner-7B":
        processor = processor_z
        model = model_z
    else:
        yield "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": text}]}
    ]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# Define examples for image and video inference
image_examples = [
    ["Perform OCR on the text in the image.", "images/1.jpg"],
    ["Explain the scene in detail.", "images/2.jpg"]
]

video_examples = [
    ["Explain the Ad in Detail", "videos/1.mp4"],
    ["Identify the main actions in the video", "videos/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **DocScope-R1**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
            model_choice = gr.Radio(
                choices=["Cosmos-Reason1-7B", "docscopeOCR-7B-050425-exp", "Captioner-7B"],
                label="Select Model",
                value="Cosmos-Reason1-7B"
            )
            
            gr.Markdown("**Model Info**")
            gr.Markdown("⤷ [Cosmos-Reason1-7B](https://huggingface.co/nvidia/Cosmos-Reason1-7B): understand physical common sense and generate appropriate embodied decisions.")
            gr.Markdown("⤷ [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): optimized for document-level optical character recognition, long-context vision-language understanding.")
            gr.Markdown("⤷ [Captioner-Relaxed-7B](https://huggingface.co/Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed): build with hand-curated dataset for text-to-image models, providing significantly more detailed descriptions or captions of given images.")
            
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)