Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,708 Bytes
e01e01c a85c4cf f5e2b63 04cce22 e01e01c 11d7c13 f5e2b63 e01e01c 04cce22 f5e2b63 a85c4cf 4074d29 e01e01c 4074d29 f5e2b63 04cce22 f5e2b63 04cce22 e01e01c 04cce22 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 4074d29 e01e01c 04cce22 e01e01c 04cce22 e01e01c 04cce22 e01e01c 04cce22 e01e01c 04cce22 e01e01c 04cce22 03b41ea 04cce22 e01e01c 04cce22 e01e01c 4074d29 e01e01c 4074d29 11d7c13 f5e2b63 e01e01c 04cce22 e01e01c 03b41ea e01e01c 4074d29 e01e01c 03b41ea 56aa407 04cce22 108256c e01e01c 03b41ea e01e01c 108256c e01e01c 108256c e01e01c 108256c 4074d29 e01e01c 4074d29 e01e01c 4074d29 ce44242 e01e01c ce44242 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c ce44242 108256c 4074d29 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c e01e01c 108256c ce44242 e01e01c 03b41ea ce44242 e01e01c ce44242 e01e01c 03b41ea e01e01c 03b41ea e01e01c 108256c e01e01c 03b41ea e01e01c 03b41ea e01e01c 03b41ea e01e01c 108256c e01e01c 108256c e01e01c 108256c e9f69e7 e01e01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# -*- coding: utf-8 -*-
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Remove ImageSlider import as it's no longer needed
# from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
# --- Model Loading (Keep as is) ---
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# --- Helper Functions (Keep as is, except infer) ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
# Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
# Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
raise gr.Error("Please upload an input image.")
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
# Optionally provide feedback or default to middle
# gr.Warning(f"Cannot expand image with '{alignment}' alignment as source dimension is larger than target. Defaulting to 'Middle'.")
alignment = "Middle"
# Recalculate background and mask if alignment changed due to this check
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
cnet_image = background.copy()
# Apply mask to create the input for controlnet (black out non-masked area)
# cnet_image.paste(0, (0, 0), mask) # This line seems incorrect for inpainting/outpainting, usually the unmasked area is kept
# The pipeline expects the original image content where mask=0 and potentially noise/latents where mask=1
# Let's keep the original image content in the unmasked area and let the pipeline handle the masked area.
# The `StableDiffusionXLFillPipeline` likely uses the `image` input and `mask` differently than standard inpainting.
# Based on typical diffusers pipelines, `image` is often the *original* content placed on the canvas.
# Let's pass `background` as the image input for the pipeline.
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True, negative_prompt="") # Add default negative prompt
# The pipeline expects the `image` and `mask_image` arguments for inpainting/outpainting
# `image` should be the canvas with the original image placed.
# `mask_image` defines the area to be filled (white=fill, black=keep).
# Our mask is inverted (black=keep, white=fill). Invert it.
inverted_mask = Image.fromarray(255 - np.array(mask))
# Run the pipeline
# Note: The generator inside the pipeline call is not used here as we only need the final result.
# We iterate once to get the final image.
generated_image = None
for img_output in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=background, # Pass the background with the source image placed
mask_image=inverted_mask, # Pass the inverted mask (white = area to fill)
control_image=background, # ControlNet Union might need the full image context
num_inference_steps=num_inference_steps,
output_type="pil" # Ensure PIL images are returned
):
generated_image = img_output[0] # The pipeline returns a list containing the image
if generated_image is None:
raise gr.Error("Image generation failed.")
# The pipeline should return the complete image already composited.
# No need to manually paste.
final_image = generated_image.convert("RGB")
# Yield only the final generated image
yield final_image
def clear_result():
"""Clears the result Image component."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "Custom":
# Keep current slider values but open the accordion
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
"""Selects the preset radio button based on current width/height."""
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
"""Shows/hides the custom resize slider."""
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if new_image is None: # Don't add None to history
return history
if history is None:
history = []
# Prepend the new image (as PIL) to the history list
history.insert(0, new_image)
# Limit history size if desired (e.g., keep last 12)
max_history = 12
if len(history) > max_history:
history = history[:max_history]
return history
# --- Gradio UI ---
css = """
.gradio-container {
max-width: 1200px !important; /* Limit overall width */
margin: auto; /* Center the container */
}
/* Ensure gallery items are reasonably sized */
#history_gallery .thumbnail-item {
height: 100px !important; /* Adjust as needed */
}
#history_gallery .gallery {
grid-template-columns: repeat(auto-fill, minmax(100px, 1fr)) !important; /* Adjust column size */
}
"""
title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1): # Input column
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)", placeholder="Describe the desired extended scene...")
with gr.Column(scale=1, min_width=150):
run_button = gr.Button("Generate", variant="primary")
with gr.Row():
target_ratio = gr.Radio(
label="Target Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Align Source Image"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width (px)",
minimum=512, # Lowered min slightly
maximum=2048, # Increased max slightly
step=64, # SDXL optimal step
value=720,
)
height_slider = gr.Slider(
label="Target Height (px)",
minimum=512, # Lowered min slightly
maximum=2048, # Increased max slightly
step=64, # SDXL optimal step
value=1280,
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=20, step=1, value=8) # Increased max steps slightly
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1,
info="How much the new area overlaps the original image."
)
gr.Markdown("Select sides to overlap (influences mask generation):")
with gr.Row():
overlap_top = gr.Checkbox(label="Top", value=True)
overlap_right = gr.Checkbox(label="Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Left", value=True)
overlap_bottom = gr.Checkbox(label="Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image before placing",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full",
info="Scales the source image down before placing it on the target canvas."
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
with gr.Column():
preview_button = gr.Button("Preview Alignment & Mask")
gr.Examples(
examples=[
["./examples/example_1.webp", 1280, 720, "Middle", "A wide landscape view of the mountains"],
["./examples/example_2.jpg", 1440, 810, "Left", "Full body shot of the cat sitting on a rug"],
["./examples/example_3.jpg", 1024, 1024, "Top", "The cloudy sky above the building"],
["./examples/example_3.jpg", 1024, 1024, "Bottom", "The street below the building"],
],
inputs=[input_image, width_slider, height_slider, alignment_dropdown, prompt_input],
label="Examples (Click to load)"
)
with gr.Column(scale=1): # Output column
# Replace ImageSlider with gr.Image
result_image = gr.Image(
label="Generated Image",
interactive=False,
show_download_button=True,
type="pil" # Ensure output is PIL for history
)
with gr.Row():
use_as_input_button = gr.Button("Use as Input", visible=False)
clear_button = gr.Button("Clear Output") # Added clear button
preview_mask_image = gr.Image(label="Alignment & Mask Preview", interactive=False)
history_gallery = gr.Gallery(
label="History",
columns=4, # Adjust columns as needed
object_fit="contain",
interactive=False,
show_label=True,
elem_id="history_gallery",
height=300 # Set a fixed height for the gallery area
)
# --- Event Handlers ---
def use_output_as_input(output_pil_image):
"""Sets the generated output PIL image as the new input image."""
# output_image comes directly from result_image which is PIL type
return gr.update(value=output_pil_image)
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result_image], # Input is the single result image
outputs=[input_image]
)
clear_button.click(
fn=lambda: (gr.update(value=None), gr.update(visible=False), gr.update(value=None)), # Clear image, hide button, clear preview
inputs=None,
outputs=[result_image, use_as_input_button, preview_mask_image],
queue=False
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
# Link sliders back to ratio selector and potentially open accordion
width_slider.change(
fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
inputs=[width_slider, height_slider],
outputs=[target_ratio, settings_panel],
queue=False
)
height_slider.change(
fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
inputs=[width_slider, height_slider],
outputs=[target_ratio, settings_panel],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Define common inputs for generation
gen_inputs = [
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom
]
# Define common steps after generation
def handle_output(generated_image, current_history):
# generated_image is the single PIL image from infer
new_history = update_history(generated_image, current_history)
button_visibility = gr.update(visible=True) if generated_image else gr.update(visible=False)
return generated_image, new_history, button_visibility
run_button.click(
fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
inputs=None,
outputs=[result_image, use_as_input_button],
queue=False # Don't queue the clearing part
).then(
fn=infer, # Run the generation
inputs=gen_inputs,
outputs=result_image, # Output is the single generated image
).then(
fn=handle_output, # Process output: update history, show button
inputs=[result_image, history_gallery],
outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
)
prompt_input.submit(
fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
inputs=None,
outputs=[result_image, use_as_input_button],
queue=False # Don't queue the clearing part
).then(
fn=infer, # Run the generation
inputs=gen_inputs,
outputs=result_image, # Output is the single generated image
).then(
fn=handle_output, # Process output: update history, show button
inputs=[result_image, history_gallery],
outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_mask_image, # Output to the preview image component
queue=False # Preview should be fast
)
# Launch the app
demo.queue(max_size=12).launch(share=False, ssr_mode=False, show_error=True) |