File size: 23,708 Bytes
e01e01c
a85c4cf
 
 
f5e2b63
04cce22
e01e01c
 
11d7c13
f5e2b63
e01e01c
 
04cce22
f5e2b63
a85c4cf
4074d29
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074d29
f5e2b63
04cce22
f5e2b63
 
 
 
 
 
04cce22
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cce22
 
e01e01c
4074d29
e01e01c
 
4074d29
e01e01c
 
4074d29
e01e01c
 
 
4074d29
e01e01c
 
4074d29
e01e01c
4074d29
e01e01c
 
4074d29
e01e01c
 
 
4074d29
e01e01c
 
 
 
 
4074d29
 
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cce22
 
 
 
 
e01e01c
04cce22
 
 
e01e01c
04cce22
 
 
e01e01c
04cce22
e01e01c
 
04cce22
 
e01e01c
04cce22
 
 
 
 
 
 
 
 
 
03b41ea
04cce22
 
 
 
e01e01c
 
04cce22
 
e01e01c
4074d29
e01e01c
4074d29
 
 
11d7c13
f5e2b63
e01e01c
 
04cce22
 
e01e01c
 
03b41ea
e01e01c
 
 
4074d29
e01e01c
 
03b41ea
56aa407
04cce22
108256c
e01e01c
 
 
 
 
 
 
 
 
 
03b41ea
e01e01c
 
 
108256c
e01e01c
 
 
 
 
108256c
 
 
e01e01c
 
 
 
108256c
4074d29
e01e01c
 
 
 
 
4074d29
e01e01c
 
 
 
 
4074d29
ce44242
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
108256c
e01e01c
 
 
 
 
 
 
 
108256c
 
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108256c
 
e01e01c
108256c
e01e01c
 
 
 
108256c
 
e01e01c
 
 
 
 
 
 
 
 
 
108256c
ce44242
108256c
 
 
4074d29
108256c
 
 
e01e01c
108256c
e01e01c
108256c
e01e01c
108256c
 
e01e01c
108256c
e01e01c
108256c
e01e01c
108256c
 
 
 
 
 
 
 
 
ce44242
e01e01c
03b41ea
ce44242
 
 
 
 
e01e01c
 
 
 
 
 
 
 
 
 
 
 
ce44242
e01e01c
03b41ea
e01e01c
03b41ea
e01e01c
 
 
108256c
 
e01e01c
 
 
 
 
03b41ea
e01e01c
03b41ea
e01e01c
03b41ea
e01e01c
 
 
108256c
 
e01e01c
108256c
 
e01e01c
 
 
 
108256c
e9f69e7
e01e01c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# -*- coding: utf-8 -*-
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Remove ImageSlider import as it's no longer needed
# from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

# --- Model Loading (Keep as is) ---
config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

# --- Helper Functions (Keep as is, except infer) ---

def can_expand(source_width, source_height, target_width, target_height, alignment):
    """Checks if the image can be expanded based on the alignment."""
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    # Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    # Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    # Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas
    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch

    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height


    # Draw the mask
    mask_draw.rectangle([
        (left_overlap, top_overlap),
        (right_overlap, bottom_overlap)
    ], fill=0)

    return background, mask

def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    # Create a preview image showing the mask
    preview = background.copy().convert('RGBA')

    # Create a semi-transparent red overlay
    red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))  # Reduced alpha to 64 (25% opacity)

    # Convert black pixels in the mask to semi-transparent red
    red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
    red_mask.paste(red_overlay, (0, 0), mask)

    # Overlay the red mask on the background
    preview = Image.alpha_composite(preview, red_mask)

    return preview

@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    if image is None:
        raise gr.Error("Please upload an input image.")

    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    if not can_expand(background.width, background.height, width, height, alignment):
        # Optionally provide feedback or default to middle
        # gr.Warning(f"Cannot expand image with '{alignment}' alignment as source dimension is larger than target. Defaulting to 'Middle'.")
        alignment = "Middle"
        # Recalculate background and mask if alignment changed due to this check
        background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)


    cnet_image = background.copy()
    # Apply mask to create the input for controlnet (black out non-masked area)
    # cnet_image.paste(0, (0, 0), mask) # This line seems incorrect for inpainting/outpainting, usually the unmasked area is kept
    # The pipeline expects the original image content where mask=0 and potentially noise/latents where mask=1
    # Let's keep the original image content in the unmasked area and let the pipeline handle the masked area.
    # The `StableDiffusionXLFillPipeline` likely uses the `image` input and `mask` differently than standard inpainting.
    # Based on typical diffusers pipelines, `image` is often the *original* content placed on the canvas.
    # Let's pass `background` as the image input for the pipeline.

    final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True, negative_prompt="") # Add default negative prompt

    # The pipeline expects the `image` and `mask_image` arguments for inpainting/outpainting
    # `image` should be the canvas with the original image placed.
    # `mask_image` defines the area to be filled (white=fill, black=keep).
    # Our mask is inverted (black=keep, white=fill). Invert it.
    inverted_mask = Image.fromarray(255 - np.array(mask))

    # Run the pipeline
    # Note: The generator inside the pipeline call is not used here as we only need the final result.
    # We iterate once to get the final image.
    generated_image = None
    for img_output in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=background, # Pass the background with the source image placed
        mask_image=inverted_mask, # Pass the inverted mask (white = area to fill)
        control_image=background, # ControlNet Union might need the full image context
        num_inference_steps=num_inference_steps,
        output_type="pil" # Ensure PIL images are returned
    ):
        generated_image = img_output[0] # The pipeline returns a list containing the image

    if generated_image is None:
         raise gr.Error("Image generation failed.")

    # The pipeline should return the complete image already composited.
    # No need to manually paste.
    final_image = generated_image.convert("RGB")

    # Yield only the final generated image
    yield final_image


def clear_result():
    """Clears the result Image component."""
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update(open=False) # Close accordion
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update(open=False) # Close accordion
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return changed_width, changed_height, gr.update(open=False) # Close accordion
    elif target_ratio == "Custom":
        # Keep current slider values but open the accordion
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    """Selects the preset radio button based on current width/height."""
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    """Shows/hides the custom resize slider."""
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if new_image is None: # Don't add None to history
        return history
    if history is None:
        history = []
    # Prepend the new image (as PIL) to the history list
    history.insert(0, new_image)
    # Limit history size if desired (e.g., keep last 12)
    max_history = 12
    if len(history) > max_history:
        history = history[:max_history]
    return history

# --- Gradio UI ---

css = """
.gradio-container {
    max-width: 1200px !important; /* Limit overall width */
    margin: auto; /* Center the container */
}
/* Ensure gallery items are reasonably sized */
#history_gallery .thumbnail-item {
    height: 100px !important; /* Adjust as needed */
}
#history_gallery .gallery {
    grid-template-columns: repeat(auto-fill, minmax(100px, 1fr)) !important; /* Adjust column size */
}

"""

title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <p style="display: flex;gap: 6px;">
         <a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint?duplicate=true">
            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
        </a> to skip the queue and enjoy faster inference on the GPU of your choice
    </p>
</div>
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column(scale=1): # Input column
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)", placeholder="Describe the desired extended scene...")
                    with gr.Column(scale=1, min_width=150):
                        run_button = gr.Button("Generate", variant="primary")

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Target Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )

                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Align Source Image"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width (px)",
                                minimum=512, # Lowered min slightly
                                maximum=2048, # Increased max slightly
                                step=64, # SDXL optimal step
                                value=720,
                            )
                            height_slider = gr.Slider(
                                label="Target Height (px)",
                                minimum=512, # Lowered min slightly
                                maximum=2048, # Increased max slightly
                                step=64, # SDXL optimal step
                                value=1280,
                            )

                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=20, step=1, value=8) # Increased max steps slightly
                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                minimum=1,
                                maximum=50,
                                value=10,
                                step=1,
                                info="How much the new area overlaps the original image."
                            )
                            gr.Markdown("Select sides to overlap (influences mask generation):")
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Top", value=True)
                                overlap_right = gr.Checkbox(label="Right", value=True)
                            with gr.Row():
                                overlap_left = gr.Checkbox(label="Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Bottom", value=True)
                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image before placing",
                                choices=["Full", "50%", "33%", "25%", "Custom"],
                                value="Full",
                                info="Scales the source image down before placing it on the target canvas."
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=50,
                                visible=False
                            )

                        with gr.Column():
                            preview_button = gr.Button("Preview Alignment & Mask")


                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", 1280, 720, "Middle", "A wide landscape view of the mountains"],
                        ["./examples/example_2.jpg", 1440, 810, "Left", "Full body shot of the cat sitting on a rug"],
                        ["./examples/example_3.jpg", 1024, 1024, "Top", "The cloudy sky above the building"],
                        ["./examples/example_3.jpg", 1024, 1024, "Bottom", "The street below the building"],
                    ],
                    inputs=[input_image, width_slider, height_slider, alignment_dropdown, prompt_input],
                    label="Examples (Click to load)"
                )

            with gr.Column(scale=1): # Output column
                # Replace ImageSlider with gr.Image
                result_image = gr.Image(
                    label="Generated Image",
                    interactive=False,
                    show_download_button=True,
                    type="pil" # Ensure output is PIL for history
                )
                with gr.Row():
                    use_as_input_button = gr.Button("Use as Input", visible=False)
                    clear_button = gr.Button("Clear Output") # Added clear button

                preview_mask_image = gr.Image(label="Alignment & Mask Preview", interactive=False)

                history_gallery = gr.Gallery(
                    label="History",
                    columns=4, # Adjust columns as needed
                    object_fit="contain",
                    interactive=False,
                    show_label=True,
                    elem_id="history_gallery",
                    height=300 # Set a fixed height for the gallery area
                    )


    # --- Event Handlers ---

    def use_output_as_input(output_pil_image):
        """Sets the generated output PIL image as the new input image."""
        # output_image comes directly from result_image which is PIL type
        return gr.update(value=output_pil_image)

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result_image], # Input is the single result image
        outputs=[input_image]
    )

    clear_button.click(
        fn=lambda: (gr.update(value=None), gr.update(visible=False), gr.update(value=None)), # Clear image, hide button, clear preview
        inputs=None,
        outputs=[result_image, use_as_input_button, preview_mask_image],
        queue=False
    )

    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    # Link sliders back to ratio selector and potentially open accordion
    width_slider.change(
        fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
        inputs=[width_slider, height_slider],
        outputs=[target_ratio, settings_panel],
        queue=False
    )

    height_slider.change(
         fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
        inputs=[width_slider, height_slider],
        outputs=[target_ratio, settings_panel],
        queue=False
    )

    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )

    # Define common inputs for generation
    gen_inputs = [
        input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
        resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
        overlap_left, overlap_right, overlap_top, overlap_bottom
    ]

    # Define common steps after generation
    def handle_output(generated_image, current_history):
        # generated_image is the single PIL image from infer
        new_history = update_history(generated_image, current_history)
        button_visibility = gr.update(visible=True) if generated_image else gr.update(visible=False)
        return generated_image, new_history, button_visibility

    run_button.click(
        fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
        inputs=None,
        outputs=[result_image, use_as_input_button],
        queue=False # Don't queue the clearing part
    ).then(
        fn=infer, # Run the generation
        inputs=gen_inputs,
        outputs=result_image, # Output is the single generated image
    ).then(
        fn=handle_output, # Process output: update history, show button
        inputs=[result_image, history_gallery],
        outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
    )

    prompt_input.submit(
         fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
        inputs=None,
        outputs=[result_image, use_as_input_button],
        queue=False # Don't queue the clearing part
    ).then(
        fn=infer, # Run the generation
        inputs=gen_inputs,
        outputs=result_image, # Output is the single generated image
    ).then(
        fn=handle_output, # Process output: update history, show button
        inputs=[result_image, history_gallery],
        outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
    )


    preview_button.click(
        fn=preview_image_and_mask,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=preview_mask_image, # Output to the preview image component
        queue=False # Preview should be fast
    )

# Launch the app
demo.queue(max_size=12).launch(share=False, ssr_mode=False, show_error=True)