File size: 14,925 Bytes
a85c4cf
 
 
f5e2b63
04cce22
11d7c13
f5e2b63
e01e01c
 
04cce22
f5e2b63
a85c4cf
4074d29
fe264a3
 
 
 
 
e01e01c
 
 
 
 
 
 
 
 
 
a5ce6db
fe264a3
a5ce6db
e01e01c
fe264a3
e01e01c
fe264a3
 
 
 
 
e01e01c
fe264a3
 
19d58d4
fe264a3
d4884bc
 
fe264a3
d4884bc
 
19d58d4
 
fe264a3
 
 
 
 
19d58d4
 
fe264a3
19d58d4
 
fe264a3
 
e01e01c
fe264a3
04cce22
e01e01c
 
 
 
 
19d58d4
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d58d4
e01e01c
 
19d58d4
e01e01c
19d58d4
 
 
 
 
 
 
 
 
 
 
 
 
d4884bc
19d58d4
 
 
 
e01e01c
 
04cce22
fe264a3
1124bc4
fe264a3
19d58d4
 
 
 
 
 
 
 
 
 
 
 
fe264a3
19d58d4
fe264a3
19d58d4
 
 
 
 
 
 
fe264a3
 
19d58d4
 
 
 
 
e01e01c
fe264a3
e01e01c
 
 
04cce22
 
fe264a3
04cce22
fe264a3
04cce22
fe264a3
04cce22
e01e01c
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074d29
11d7c13
f5e2b63
fe264a3
04cce22
4a9305f
19d58d4
 
76bb293
22ef061
108256c
a5ce6db
e01e01c
03b41ea
fe264a3
76bb293
e01e01c
 
108256c
e01e01c
19d58d4
e01e01c
 
 
108256c
fe264a3
108256c
e01e01c
19d58d4
 
 
108256c
fe264a3
 
 
 
 
 
 
4074d29
e01e01c
19d58d4
e01e01c
19d58d4
e01e01c
4074d29
e01e01c
 
 
19d58d4
4074d29
ce44242
e01e01c
 
 
 
a5ce6db
19d58d4
a5ce6db
19d58d4
 
e01e01c
 
a5ce6db
19d58d4
a5ce6db
19d58d4
 
e01e01c
fe264a3
a5ce6db
e01e01c
 
 
 
 
19d58d4
a5ce6db
e01e01c
 
19d58d4
 
 
 
 
e01e01c
 
19d58d4
e01e01c
19d58d4
e01e01c
 
 
 
 
 
 
19d58d4
e01e01c
fe264a3
108256c
e01e01c
19d58d4
 
 
 
e01e01c
19d58d4
e01e01c
108256c
19d58d4
b4cb811
 
 
edc9e87
b4cb811
19d58d4
d4884bc
fe264a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70cf16f
a5ce6db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

# Load VAE and ControlNet (shared components)
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
controlnet, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
controlnet.to(device="cuda", dtype=torch.float16)

# Define available models
models = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
    "RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
}

# Load default pipeline
default_model = "RealVisXL V5.0 Lightning"
pipe = StableDiffusionXLFillPipeline.from_pretrained(
    models[default_model],
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=controlnet,
    variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

# Function to load pipeline based on selected model
def load_pipeline(model_name):
    repo_id = models[model_name]
    new_pipe = StableDiffusionXLFillPipeline.from_pretrained(
        repo_id,
        torch_dtype=torch.float16,
        vae=vae,
        controlnet=controlnet,
        variant="fp16",
    ).to("cuda")
    new_pipe.scheduler = TCDScheduler.from_config(new_pipe.scheduler.config)
    return new_pipe

# Prepare image and mask function (unchanged)
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)
    
    source = image.resize((new_width, new_height), Image.LANCZOS)

    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    source = source.resize((new_width, new_height), Image.LANCZOS)

    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
    
    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height

    mask_draw.rectangle([
        (left_overlap, top_overlap),
        (right_overlap, bottom_overlap)
    ], fill=0)

    return background, mask

# Updated inference function to use selected pipeline
@spaces.GPU(duration=24)
def infer(pipeline, image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
    
    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    final_prompt = f"{prompt_input} , high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipeline.encode_prompt(final_prompt, "cuda", True)

    for image in pipeline(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
        num_inference_steps=num_inference_steps
    ):
        pass
    generated_image = image

    generated_image = generated_image.convert("RGBA")
    cnet_image.paste(generated_image, (0, 0), mask)

    return cnet_image

# Utility functions (unchanged)
def clear_result():
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    if target_ratio == "9:16":
        return 720, 1280, gr.update()
    elif target_ratio == "16:9":
        return 1280, 720, gr.update()
    elif target_ratio == "1:1":
        return 1024, 1024, gr.update()
    elif target_ratio == "Custom":
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    if history is None:
        history = []
    history.insert(0, new_image)
    return history

# CSS and title (unchanged)
css = """
h1 {
  text-align: center;
  display: block;
}
"""

title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
"""

# Gradio interface with model selection
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)")
                    with gr.Column(scale=1):
                        run_button = gr.Button("Generate")

                with gr.Row():
                    model_selector = gr.Dropdown(
                        label="Select Model",
                        choices=list(models.keys()),
                        value="RealVisXL V5.0 Lightning",
                    )

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Expected Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )
                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Alignment"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=720,
                            )
                            height_slider = gr.Slider(
                                label="Target Height",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1280,
                            )
                        
                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                minimum=1,
                                maximum=50,
                                value=10,
                                step=1
                            )
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Overlap Top", value=True)
                                overlap_right = gr.Checkbox(label="Overlap Right", value=True)
                            with gr.Row():
                                overlap_left = gr.Checkbox(label="Overlap Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image",
                                choices=["Full", "50%", "33%", "25%", "Custom"],
                                value="Full"
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=50,
                                visible=False
                            )
                            
                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", 1280, 720, "Middle"],
                        ["./examples/example_2.jpg", 1440, 810, "Left"],
                        ["./examples/example_3.jpg", 1024, 1024, "Top"],
                        ["./examples/example_3.jpg", 1024, 1024, "Bottom"],
                    ],
                    inputs=[input_image, width_slider, height_slider, alignment_dropdown],
                )

            with gr.Column():
                result = gr.Image(
                    interactive=False,
                    label="Generated Image",
                    format="png",
                )
                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)

        # State to hold the current pipeline
        pipeline_state = gr.State(value=pipe)

        # Update pipeline when model is selected
        model_selector.change(
            fn=load_pipeline,
            inputs=model_selector,
            outputs=pipeline_state,
        )

        target_ratio.change(
            fn=preload_presets,
            inputs=[target_ratio, width_slider, height_slider],
            outputs=[width_slider, height_slider, settings_panel],
            queue=False
        )

        width_slider.change(
            fn=select_the_right_preset,
            inputs=[width_slider, height_slider],
            outputs=[target_ratio],
            queue=False
        )

        height_slider.change(
            fn=select_the_right_preset,
            inputs=[width_slider, height_slider],
            outputs=[target_ratio],
            queue=False
        )

        resize_option.change(
            fn=toggle_custom_resize_slider,
            inputs=[resize_option],
            outputs=[custom_resize_percentage],
            queue=False
        )
        
        run_button.click(
            fn=clear_result,
            inputs=None,
            outputs=result,
        ).then(
            fn=infer,
            inputs=[pipeline_state, input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
                    resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
                    overlap_left, overlap_right, overlap_top, overlap_bottom],
            outputs=result,
        ).then(
            fn=lambda x, history: update_history(x, history),
            inputs=[result, history_gallery],
            outputs=history_gallery,
        )

        prompt_input.submit(
            fn=clear_result,
            inputs=None,
            outputs=result,
        ).then(
            fn=infer,
            inputs=[pipeline_state, input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
                    resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
                    overlap_left, overlap_right, overlap_top, overlap_bottom],
            outputs=result,
        ).then(
            fn=lambda x, history: update_history(x, history),
            inputs=[result, history_gallery],
            outputs=history_gallery,
        )

demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)