Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,480 Bytes
a85c4cf f5e2b63 04cce22 11d7c13 f5e2b63 e01e01c 04cce22 f5e2b63 a85c4cf 4074d29 e01e01c eeaa91e e01e01c eeaa91e a5ce6db eeaa91e a5ce6db e01e01c eeaa91e e01e01c eeaa91e d4884bc 19d58d4 eeaa91e 19d58d4 eeaa91e 19d58d4 eeaa91e e01e01c 04cce22 e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e 19d58d4 e01e01c eeaa91e 19d58d4 e01e01c 19d58d4 eeaa91e 19d58d4 d4884bc eeaa91e 19d58d4 e01e01c 04cce22 927c42d eeaa91e 19d58d4 eeaa91e 19d58d4 eeaa91e 19d58d4 eeaa91e 19d58d4 eeaa91e 19d58d4 eeaa91e 19d58d4 e01e01c eeaa91e e01e01c eeaa91e e01e01c eeaa91e 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 e01e01c 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 eeaa91e 04cce22 4074d29 11d7c13 f5e2b63 aafb2ff 04cce22 4a9305f 19d58d4 aafb2ff 2da71d2 0628dc5 9edf76a 0628dc5 9edf76a 22ef061 108256c a5ce6db e01e01c 03b41ea 7338e76 e01e01c 108256c e01e01c 19d58d4 e01e01c 108256c fe264a3 108256c e01e01c 19d58d4 521e7b5 3bc92ac 4074d29 e01e01c 19d58d4 e01e01c 19d58d4 e01e01c 4074d29 eeaa91e e01e01c 19d58d4 4074d29 ce44242 e01e01c 45fbfdd 19d58d4 a5ce6db 19d58d4 e01e01c 45fbfdd 19d58d4 a5ce6db 19d58d4 e01e01c eeaa91e a5ce6db e01e01c 19d58d4 a5ce6db e01e01c 19d58d4 e01e01c 19d58d4 5eb36bd e01e01c 19d58d4 e01e01c 19d58d4 e01e01c eeaa91e 108256c e01e01c 15e5fd4 45fbfdd 5eb36bd 1413de9 45fbfdd e01e01c 19d58d4 e01e01c 108256c 19d58d4 b4cb811 edc9e87 b4cb811 19d58d4 d4884bc eeaa91e 70cf16f a5ce6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
# Initialize both pipelines and store them in a dictionary
pipelines = {
"RealVisXL V5.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda"),
"RealVisXL V4.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda"),
}
for pipe in pipelines.values():
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
@spaces.GPU(duration=28)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, selected_model):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
# Access the selected pipeline from the dictionary
pipe = pipelines[selected_model]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
# Generate the image
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
pass # Wait for the generation to complete
generated_image = image # Get the last image
generated_image = generated_image.convert("RGBA")
cnet_image.paste(generated_image, (0, 0), mask)
return cnet_image
def clear_result():
"""Clears the result Image."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update()
elif target_ratio == "Custom":
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
history.insert(0, new_image)
return history
# CSS and title (unchanged)
css = """
h1 {
text-align: center;
display: block;
}
.submit-btn {
background-color: #4682B4 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #87CEFA !important;
"""
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
run_button = gr.Button("Re-Generate Image / Diffusers Outpaint Image Lightning / Lightning v4, v5", elem_classes="submit-btn")
with gr.Row():
model_selector = gr.Dropdown(
label="Select Model",
choices=list(pipelines.keys()),
value="RealVisXL V5.0 Lightning",
)
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Width",
minimum=720,
maximum=1536,
step=8,
value=720,
)
height_slider = gr.Slider(
label="Height",
minimum=720,
maximum=1536,
step=8,
value=1280,
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
#choices=["Full", "50%", "33%", "25%", "Custom"],
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
gr.Examples(
examples=[
["./examples/3.jpg", 1024, 1024, "Top"],
["./examples/4.jpg", 1024, 1024, "Middle"],
["./examples/2.png", 720, 1280, "Left"],
["./examples/1.png", 1280, 720, "Bottom"],
["./examples/5.jpg", 1024, 1024, "Bottom"],
],
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
)
with gr.Column():
result = gr.Image(
interactive=False,
label="Generated Image",
format="png",
)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector],
outputs=result,
).then(
fn=lambda x, history: update_history(x, history),
inputs=[result, history_gallery],
outputs=history_gallery,
)
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector],
outputs=result,
).then(
fn=lambda x, history: update_history(x, history),
inputs=[result, history_gallery],
outputs=history_gallery,
)
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True) |