prithivMLmods's picture
Update app.py
e01e01c verified
raw
history blame
23.7 kB
# -*- coding: utf-8 -*-
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Remove ImageSlider import as it's no longer needed
# from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
# --- Model Loading (Keep as is) ---
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# --- Helper Functions (Keep as is, except infer) ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
# Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
# Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
raise gr.Error("Please upload an input image.")
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
# Optionally provide feedback or default to middle
# gr.Warning(f"Cannot expand image with '{alignment}' alignment as source dimension is larger than target. Defaulting to 'Middle'.")
alignment = "Middle"
# Recalculate background and mask if alignment changed due to this check
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
cnet_image = background.copy()
# Apply mask to create the input for controlnet (black out non-masked area)
# cnet_image.paste(0, (0, 0), mask) # This line seems incorrect for inpainting/outpainting, usually the unmasked area is kept
# The pipeline expects the original image content where mask=0 and potentially noise/latents where mask=1
# Let's keep the original image content in the unmasked area and let the pipeline handle the masked area.
# The `StableDiffusionXLFillPipeline` likely uses the `image` input and `mask` differently than standard inpainting.
# Based on typical diffusers pipelines, `image` is often the *original* content placed on the canvas.
# Let's pass `background` as the image input for the pipeline.
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True, negative_prompt="") # Add default negative prompt
# The pipeline expects the `image` and `mask_image` arguments for inpainting/outpainting
# `image` should be the canvas with the original image placed.
# `mask_image` defines the area to be filled (white=fill, black=keep).
# Our mask is inverted (black=keep, white=fill). Invert it.
inverted_mask = Image.fromarray(255 - np.array(mask))
# Run the pipeline
# Note: The generator inside the pipeline call is not used here as we only need the final result.
# We iterate once to get the final image.
generated_image = None
for img_output in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=background, # Pass the background with the source image placed
mask_image=inverted_mask, # Pass the inverted mask (white = area to fill)
control_image=background, # ControlNet Union might need the full image context
num_inference_steps=num_inference_steps,
output_type="pil" # Ensure PIL images are returned
):
generated_image = img_output[0] # The pipeline returns a list containing the image
if generated_image is None:
raise gr.Error("Image generation failed.")
# The pipeline should return the complete image already composited.
# No need to manually paste.
final_image = generated_image.convert("RGB")
# Yield only the final generated image
yield final_image
def clear_result():
"""Clears the result Image component."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update(open=False) # Close accordion
elif target_ratio == "Custom":
# Keep current slider values but open the accordion
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
"""Selects the preset radio button based on current width/height."""
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
"""Shows/hides the custom resize slider."""
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if new_image is None: # Don't add None to history
return history
if history is None:
history = []
# Prepend the new image (as PIL) to the history list
history.insert(0, new_image)
# Limit history size if desired (e.g., keep last 12)
max_history = 12
if len(history) > max_history:
history = history[:max_history]
return history
# --- Gradio UI ---
css = """
.gradio-container {
max-width: 1200px !important; /* Limit overall width */
margin: auto; /* Center the container */
}
/* Ensure gallery items are reasonably sized */
#history_gallery .thumbnail-item {
height: 100px !important; /* Adjust as needed */
}
#history_gallery .gallery {
grid-template-columns: repeat(auto-fill, minmax(100px, 1fr)) !important; /* Adjust column size */
}
"""
title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1): # Input column
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)", placeholder="Describe the desired extended scene...")
with gr.Column(scale=1, min_width=150):
run_button = gr.Button("Generate", variant="primary")
with gr.Row():
target_ratio = gr.Radio(
label="Target Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Align Source Image"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width (px)",
minimum=512, # Lowered min slightly
maximum=2048, # Increased max slightly
step=64, # SDXL optimal step
value=720,
)
height_slider = gr.Slider(
label="Target Height (px)",
minimum=512, # Lowered min slightly
maximum=2048, # Increased max slightly
step=64, # SDXL optimal step
value=1280,
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=20, step=1, value=8) # Increased max steps slightly
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1,
info="How much the new area overlaps the original image."
)
gr.Markdown("Select sides to overlap (influences mask generation):")
with gr.Row():
overlap_top = gr.Checkbox(label="Top", value=True)
overlap_right = gr.Checkbox(label="Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Left", value=True)
overlap_bottom = gr.Checkbox(label="Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image before placing",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full",
info="Scales the source image down before placing it on the target canvas."
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
with gr.Column():
preview_button = gr.Button("Preview Alignment & Mask")
gr.Examples(
examples=[
["./examples/example_1.webp", 1280, 720, "Middle", "A wide landscape view of the mountains"],
["./examples/example_2.jpg", 1440, 810, "Left", "Full body shot of the cat sitting on a rug"],
["./examples/example_3.jpg", 1024, 1024, "Top", "The cloudy sky above the building"],
["./examples/example_3.jpg", 1024, 1024, "Bottom", "The street below the building"],
],
inputs=[input_image, width_slider, height_slider, alignment_dropdown, prompt_input],
label="Examples (Click to load)"
)
with gr.Column(scale=1): # Output column
# Replace ImageSlider with gr.Image
result_image = gr.Image(
label="Generated Image",
interactive=False,
show_download_button=True,
type="pil" # Ensure output is PIL for history
)
with gr.Row():
use_as_input_button = gr.Button("Use as Input", visible=False)
clear_button = gr.Button("Clear Output") # Added clear button
preview_mask_image = gr.Image(label="Alignment & Mask Preview", interactive=False)
history_gallery = gr.Gallery(
label="History",
columns=4, # Adjust columns as needed
object_fit="contain",
interactive=False,
show_label=True,
elem_id="history_gallery",
height=300 # Set a fixed height for the gallery area
)
# --- Event Handlers ---
def use_output_as_input(output_pil_image):
"""Sets the generated output PIL image as the new input image."""
# output_image comes directly from result_image which is PIL type
return gr.update(value=output_pil_image)
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result_image], # Input is the single result image
outputs=[input_image]
)
clear_button.click(
fn=lambda: (gr.update(value=None), gr.update(visible=False), gr.update(value=None)), # Clear image, hide button, clear preview
inputs=None,
outputs=[result_image, use_as_input_button, preview_mask_image],
queue=False
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
# Link sliders back to ratio selector and potentially open accordion
width_slider.change(
fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
inputs=[width_slider, height_slider],
outputs=[target_ratio, settings_panel],
queue=False
)
height_slider.change(
fn=lambda w, h: (select_the_right_preset(w, h), gr.update() if select_the_right_preset(w, h) == "Custom" else gr.update()),
inputs=[width_slider, height_slider],
outputs=[target_ratio, settings_panel],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Define common inputs for generation
gen_inputs = [
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom
]
# Define common steps after generation
def handle_output(generated_image, current_history):
# generated_image is the single PIL image from infer
new_history = update_history(generated_image, current_history)
button_visibility = gr.update(visible=True) if generated_image else gr.update(visible=False)
return generated_image, new_history, button_visibility
run_button.click(
fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
inputs=None,
outputs=[result_image, use_as_input_button],
queue=False # Don't queue the clearing part
).then(
fn=infer, # Run the generation
inputs=gen_inputs,
outputs=result_image, # Output is the single generated image
).then(
fn=handle_output, # Process output: update history, show button
inputs=[result_image, history_gallery],
outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
)
prompt_input.submit(
fn=lambda: (gr.update(value=None), gr.update(visible=False)), # Clear result and hide button first
inputs=None,
outputs=[result_image, use_as_input_button],
queue=False # Don't queue the clearing part
).then(
fn=infer, # Run the generation
inputs=gen_inputs,
outputs=result_image, # Output is the single generated image
).then(
fn=handle_output, # Process output: update history, show button
inputs=[result_image, history_gallery],
outputs=[result_image, history_gallery, use_as_input_button] # Update result again (no change), history, and button visibility
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_mask_image, # Output to the preview image component
queue=False # Preview should be fast
)
# Launch the app
demo.queue(max_size=12).launch(share=False, ssr_mode=False, show_error=True)