Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,67 +11,62 @@ from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
14 |
-
# Load VAE and ControlNet (shared components)
|
15 |
-
vae = AutoencoderKL.from_pretrained(
|
16 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
17 |
-
).to("cuda")
|
18 |
-
|
19 |
config_file = hf_hub_download(
|
20 |
"xinsir/controlnet-union-sdxl-1.0",
|
21 |
filename="config_promax.json",
|
22 |
)
|
|
|
23 |
config = ControlNetModel_Union.load_config(config_file)
|
24 |
controlnet_model = ControlNetModel_Union.from_config(config)
|
25 |
model_file = hf_hub_download(
|
26 |
"xinsir/controlnet-union-sdxl-1.0",
|
27 |
filename="diffusion_pytorch_model_promax.safetensors",
|
28 |
)
|
|
|
29 |
sstate_dict = load_state_dict(model_file)
|
30 |
-
|
31 |
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
32 |
)
|
33 |
-
|
34 |
-
|
35 |
-
# Define available models
|
36 |
-
models = {
|
37 |
-
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
38 |
-
"RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
39 |
-
}
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
44 |
-
models[default_model],
|
45 |
-
torch_dtype=torch.float16,
|
46 |
-
vae=vae,
|
47 |
-
controlnet=controlnet,
|
48 |
-
variant="fp16",
|
49 |
).to("cuda")
|
50 |
-
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
repo_id,
|
57 |
torch_dtype=torch.float16,
|
58 |
vae=vae,
|
59 |
-
controlnet=
|
60 |
variant="fp16",
|
61 |
-
).to("cuda")
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
# Prepare image and mask function (unchanged)
|
66 |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
67 |
target_size = (width, height)
|
68 |
|
|
|
69 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
70 |
new_width = int(image.width * scale_factor)
|
71 |
new_height = int(image.height * scale_factor)
|
72 |
-
|
|
|
73 |
source = image.resize((new_width, new_height), Image.LANCZOS)
|
74 |
|
|
|
75 |
if resize_option == "Full":
|
76 |
resize_percentage = 100
|
77 |
elif resize_option == "50%":
|
@@ -83,21 +78,27 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
83 |
else: # Custom
|
84 |
resize_percentage = custom_resize_percentage
|
85 |
|
|
|
86 |
resize_factor = resize_percentage / 100
|
87 |
new_width = int(source.width * resize_factor)
|
88 |
new_height = int(source.height * resize_factor)
|
89 |
|
|
|
90 |
new_width = max(new_width, 64)
|
91 |
new_height = max(new_height, 64)
|
92 |
|
|
|
93 |
source = source.resize((new_width, new_height), Image.LANCZOS)
|
94 |
|
|
|
95 |
overlap_x = int(new_width * (overlap_percentage / 100))
|
96 |
overlap_y = int(new_height * (overlap_percentage / 100))
|
97 |
|
|
|
98 |
overlap_x = max(overlap_x, 1)
|
99 |
overlap_y = max(overlap_y, 1)
|
100 |
|
|
|
101 |
if alignment == "Middle":
|
102 |
margin_x = (target_size[0] - new_width) // 2
|
103 |
margin_y = (target_size[1] - new_height) // 2
|
@@ -114,22 +115,26 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
114 |
margin_x = (target_size[0] - new_width) // 2
|
115 |
margin_y = target_size[1] - new_height
|
116 |
|
|
|
117 |
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
118 |
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
119 |
|
|
|
120 |
background = Image.new('RGB', target_size, (255, 255, 255))
|
121 |
background.paste(source, (margin_x, margin_y))
|
122 |
|
|
|
123 |
mask = Image.new('L', target_size, 255)
|
124 |
mask_draw = ImageDraw.Draw(mask)
|
125 |
|
|
|
126 |
white_gaps_patch = 2
|
127 |
|
128 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
129 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
130 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
131 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
132 |
-
|
133 |
if alignment == "Left":
|
134 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
135 |
elif alignment == "Right":
|
@@ -139,6 +144,7 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
139 |
elif alignment == "Bottom":
|
140 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
141 |
|
|
|
142 |
mask_draw.rectangle([
|
143 |
(left_overlap, top_overlap),
|
144 |
(right_overlap, bottom_overlap)
|
@@ -146,24 +152,27 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
146 |
|
147 |
return background, mask
|
148 |
|
149 |
-
# Updated inference function to use selected pipeline
|
150 |
@spaces.GPU(duration=24)
|
151 |
-
def infer(
|
152 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
153 |
-
|
154 |
cnet_image = background.copy()
|
155 |
cnet_image.paste(0, (0, 0), mask)
|
156 |
|
157 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
158 |
|
|
|
|
|
|
|
159 |
(
|
160 |
prompt_embeds,
|
161 |
negative_prompt_embeds,
|
162 |
pooled_prompt_embeds,
|
163 |
negative_pooled_prompt_embeds,
|
164 |
-
) =
|
165 |
|
166 |
-
|
|
|
167 |
prompt_embeds=prompt_embeds,
|
168 |
negative_prompt_embeds=negative_prompt_embeds,
|
169 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
@@ -171,28 +180,38 @@ def infer(pipeline, image, width, height, overlap_percentage, num_inference_step
|
|
171 |
image=cnet_image,
|
172 |
num_inference_steps=num_inference_steps
|
173 |
):
|
174 |
-
pass
|
175 |
-
generated_image = image
|
176 |
|
177 |
generated_image = generated_image.convert("RGBA")
|
178 |
cnet_image.paste(generated_image, (0, 0), mask)
|
179 |
|
180 |
return cnet_image
|
181 |
|
182 |
-
|
183 |
def clear_result():
|
|
|
184 |
return gr.update(value=None)
|
185 |
|
|
|
186 |
def preload_presets(target_ratio, ui_width, ui_height):
|
|
|
187 |
if target_ratio == "9:16":
|
188 |
-
|
|
|
|
|
189 |
elif target_ratio == "16:9":
|
190 |
-
|
|
|
|
|
191 |
elif target_ratio == "1:1":
|
192 |
-
|
|
|
|
|
193 |
elif target_ratio == "Custom":
|
194 |
return ui_width, ui_height, gr.update(open=True)
|
195 |
|
|
|
196 |
def select_the_right_preset(user_width, user_height):
|
197 |
if user_width == 720 and user_height == 1280:
|
198 |
return "9:16"
|
@@ -203,16 +222,20 @@ def select_the_right_preset(user_width, user_height):
|
|
203 |
else:
|
204 |
return "Custom"
|
205 |
|
|
|
206 |
def toggle_custom_resize_slider(resize_option):
|
207 |
return gr.update(visible=(resize_option == "Custom"))
|
208 |
|
|
|
209 |
def update_history(new_image, history):
|
|
|
210 |
if history is None:
|
211 |
history = []
|
212 |
history.insert(0, new_image)
|
213 |
return history
|
214 |
|
215 |
-
|
|
|
216 |
css = """
|
217 |
h1 {
|
218 |
text-align: center;
|
@@ -223,7 +246,6 @@ h1 {
|
|
223 |
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
|
224 |
"""
|
225 |
|
226 |
-
# Gradio interface with model selection
|
227 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
228 |
with gr.Column():
|
229 |
gr.HTML(title)
|
@@ -241,13 +263,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
241 |
with gr.Column(scale=1):
|
242 |
run_button = gr.Button("Generate")
|
243 |
|
244 |
-
with gr.Row():
|
245 |
-
model_selector = gr.Dropdown(
|
246 |
-
label="Select Model",
|
247 |
-
choices=list(models.keys()),
|
248 |
-
value="RealVisXL V5.0 Lightning",
|
249 |
-
)
|
250 |
-
|
251 |
with gr.Row():
|
252 |
target_ratio = gr.Radio(
|
253 |
label="Expected Ratio",
|
@@ -255,11 +270,18 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
255 |
value="9:16",
|
256 |
scale=2
|
257 |
)
|
|
|
258 |
alignment_dropdown = gr.Dropdown(
|
259 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
260 |
value="Middle",
|
261 |
label="Alignment"
|
262 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
265 |
with gr.Column():
|
@@ -278,7 +300,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
278 |
step=8,
|
279 |
value=1280,
|
280 |
)
|
281 |
-
|
282 |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
283 |
with gr.Group():
|
284 |
overlap_percentage = gr.Slider(
|
@@ -308,7 +330,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
308 |
value=50,
|
309 |
visible=False
|
310 |
)
|
311 |
-
|
312 |
gr.Examples(
|
313 |
examples=[
|
314 |
["./examples/example_1.webp", 1280, 720, "Middle"],
|
@@ -327,74 +349,64 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
327 |
)
|
328 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
target_ratio
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
fn=infer,
|
390 |
-
inputs=[pipeline_state, input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
391 |
-
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
392 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
393 |
-
outputs=result,
|
394 |
-
).then(
|
395 |
-
fn=lambda x, history: update_history(x, history),
|
396 |
-
inputs=[result, history_gallery],
|
397 |
-
outputs=history_gallery,
|
398 |
-
)
|
399 |
|
400 |
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)
|
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
config_file = hf_hub_download(
|
15 |
"xinsir/controlnet-union-sdxl-1.0",
|
16 |
filename="config_promax.json",
|
17 |
)
|
18 |
+
|
19 |
config = ControlNetModel_Union.load_config(config_file)
|
20 |
controlnet_model = ControlNetModel_Union.from_config(config)
|
21 |
model_file = hf_hub_download(
|
22 |
"xinsir/controlnet-union-sdxl-1.0",
|
23 |
filename="diffusion_pytorch_model_promax.safetensors",
|
24 |
)
|
25 |
+
|
26 |
sstate_dict = load_state_dict(model_file)
|
27 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
28 |
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
29 |
)
|
30 |
+
model.to(device="cuda", dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
vae = AutoencoderKL.from_pretrained(
|
33 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
).to("cuda")
|
|
|
35 |
|
36 |
+
# Initialize both pipelines and store them in a dictionary
|
37 |
+
pipelines = {
|
38 |
+
"RealVisXL V5.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained(
|
39 |
+
"SG161222/RealVisXL_V5.0_Lightning",
|
|
|
40 |
torch_dtype=torch.float16,
|
41 |
vae=vae,
|
42 |
+
controlnet=model,
|
43 |
variant="fp16",
|
44 |
+
).to("cuda"),
|
45 |
+
"RealVisXL V4.0 Lightning": StableDiffusionXLFillPipeline.from_pretrained(
|
46 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
vae=vae,
|
49 |
+
controlnet=model,
|
50 |
+
variant="fp16",
|
51 |
+
).to("cuda"),
|
52 |
+
}
|
53 |
+
|
54 |
+
for pipe in pipelines.values():
|
55 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
56 |
+
|
57 |
|
|
|
58 |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
59 |
target_size = (width, height)
|
60 |
|
61 |
+
# Calculate the scaling factor to fit the image within the target size
|
62 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
63 |
new_width = int(image.width * scale_factor)
|
64 |
new_height = int(image.height * scale_factor)
|
65 |
+
|
66 |
+
# Resize the source image to fit within target size
|
67 |
source = image.resize((new_width, new_height), Image.LANCZOS)
|
68 |
|
69 |
+
# Apply resize option using percentages
|
70 |
if resize_option == "Full":
|
71 |
resize_percentage = 100
|
72 |
elif resize_option == "50%":
|
|
|
78 |
else: # Custom
|
79 |
resize_percentage = custom_resize_percentage
|
80 |
|
81 |
+
# Calculate new dimensions based on percentage
|
82 |
resize_factor = resize_percentage / 100
|
83 |
new_width = int(source.width * resize_factor)
|
84 |
new_height = int(source.height * resize_factor)
|
85 |
|
86 |
+
# Ensure minimum size of 64 pixels
|
87 |
new_width = max(new_width, 64)
|
88 |
new_height = max(new_height, 64)
|
89 |
|
90 |
+
# Resize the image
|
91 |
source = source.resize((new_width, new_height), Image.LANCZOS)
|
92 |
|
93 |
+
# Calculate the overlap in pixels based on the percentage
|
94 |
overlap_x = int(new_width * (overlap_percentage / 100))
|
95 |
overlap_y = int(new_height * (overlap_percentage / 100))
|
96 |
|
97 |
+
# Ensure minimum overlap of 1 pixel
|
98 |
overlap_x = max(overlap_x, 1)
|
99 |
overlap_y = max(overlap_y, 1)
|
100 |
|
101 |
+
# Calculate margins based on alignment
|
102 |
if alignment == "Middle":
|
103 |
margin_x = (target_size[0] - new_width) // 2
|
104 |
margin_y = (target_size[1] - new_height) // 2
|
|
|
115 |
margin_x = (target_size[0] - new_width) // 2
|
116 |
margin_y = target_size[1] - new_height
|
117 |
|
118 |
+
# Adjust margins to eliminate gaps
|
119 |
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
120 |
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
121 |
|
122 |
+
# Create a new background image and paste the resized source image
|
123 |
background = Image.new('RGB', target_size, (255, 255, 255))
|
124 |
background.paste(source, (margin_x, margin_y))
|
125 |
|
126 |
+
# Create the mask
|
127 |
mask = Image.new('L', target_size, 255)
|
128 |
mask_draw = ImageDraw.Draw(mask)
|
129 |
|
130 |
+
# Calculate overlap areas
|
131 |
white_gaps_patch = 2
|
132 |
|
133 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
134 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
135 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
136 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
137 |
+
|
138 |
if alignment == "Left":
|
139 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
140 |
elif alignment == "Right":
|
|
|
144 |
elif alignment == "Bottom":
|
145 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
146 |
|
147 |
+
# Draw the mask
|
148 |
mask_draw.rectangle([
|
149 |
(left_overlap, top_overlap),
|
150 |
(right_overlap, bottom_overlap)
|
|
|
152 |
|
153 |
return background, mask
|
154 |
|
|
|
155 |
@spaces.GPU(duration=24)
|
156 |
+
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, selected_model):
|
157 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
158 |
+
|
159 |
cnet_image = background.copy()
|
160 |
cnet_image.paste(0, (0, 0), mask)
|
161 |
|
162 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
163 |
|
164 |
+
# Access the selected pipeline from the dictionary
|
165 |
+
pipe = pipelines[selected_model]
|
166 |
+
|
167 |
(
|
168 |
prompt_embeds,
|
169 |
negative_prompt_embeds,
|
170 |
pooled_prompt_embeds,
|
171 |
negative_pooled_prompt_embeds,
|
172 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
173 |
|
174 |
+
# Generate the image
|
175 |
+
for image in pipe(
|
176 |
prompt_embeds=prompt_embeds,
|
177 |
negative_prompt_embeds=negative_prompt_embeds,
|
178 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
180 |
image=cnet_image,
|
181 |
num_inference_steps=num_inference_steps
|
182 |
):
|
183 |
+
pass # Wait for the generation to complete
|
184 |
+
generated_image = image # Get the last image
|
185 |
|
186 |
generated_image = generated_image.convert("RGBA")
|
187 |
cnet_image.paste(generated_image, (0, 0), mask)
|
188 |
|
189 |
return cnet_image
|
190 |
|
191 |
+
|
192 |
def clear_result():
|
193 |
+
"""Clears the result Image."""
|
194 |
return gr.update(value=None)
|
195 |
|
196 |
+
|
197 |
def preload_presets(target_ratio, ui_width, ui_height):
|
198 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
199 |
if target_ratio == "9:16":
|
200 |
+
changed_width = 720
|
201 |
+
changed_height = 1280
|
202 |
+
return changed_width, changed_height, gr.update()
|
203 |
elif target_ratio == "16:9":
|
204 |
+
changed_width = 1280
|
205 |
+
changed_height = 720
|
206 |
+
return changed_width, changed_height, gr.update()
|
207 |
elif target_ratio == "1:1":
|
208 |
+
changed_width = 1024
|
209 |
+
changed_height = 1024
|
210 |
+
return changed_width, changed_height, gr.update()
|
211 |
elif target_ratio == "Custom":
|
212 |
return ui_width, ui_height, gr.update(open=True)
|
213 |
|
214 |
+
|
215 |
def select_the_right_preset(user_width, user_height):
|
216 |
if user_width == 720 and user_height == 1280:
|
217 |
return "9:16"
|
|
|
222 |
else:
|
223 |
return "Custom"
|
224 |
|
225 |
+
|
226 |
def toggle_custom_resize_slider(resize_option):
|
227 |
return gr.update(visible=(resize_option == "Custom"))
|
228 |
|
229 |
+
|
230 |
def update_history(new_image, history):
|
231 |
+
"""Updates the history gallery with the new image."""
|
232 |
if history is None:
|
233 |
history = []
|
234 |
history.insert(0, new_image)
|
235 |
return history
|
236 |
|
237 |
+
|
238 |
+
# --- CSS and Title (unchanged) ---
|
239 |
css = """
|
240 |
h1 {
|
241 |
text-align: center;
|
|
|
246 |
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
|
247 |
"""
|
248 |
|
|
|
249 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
250 |
with gr.Column():
|
251 |
gr.HTML(title)
|
|
|
263 |
with gr.Column(scale=1):
|
264 |
run_button = gr.Button("Generate")
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
with gr.Row():
|
267 |
target_ratio = gr.Radio(
|
268 |
label="Expected Ratio",
|
|
|
270 |
value="9:16",
|
271 |
scale=2
|
272 |
)
|
273 |
+
|
274 |
alignment_dropdown = gr.Dropdown(
|
275 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
276 |
value="Middle",
|
277 |
label="Alignment"
|
278 |
)
|
279 |
+
with gr.Row():
|
280 |
+
model_selector = gr.Dropdown(
|
281 |
+
label="Select Model",
|
282 |
+
choices=list(pipelines.keys()),
|
283 |
+
value="RealVisXL V5.0 Lightning",
|
284 |
+
)
|
285 |
|
286 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
287 |
with gr.Column():
|
|
|
300 |
step=8,
|
301 |
value=1280,
|
302 |
)
|
303 |
+
|
304 |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
305 |
with gr.Group():
|
306 |
overlap_percentage = gr.Slider(
|
|
|
330 |
value=50,
|
331 |
visible=False
|
332 |
)
|
333 |
+
|
334 |
gr.Examples(
|
335 |
examples=[
|
336 |
["./examples/example_1.webp", 1280, 720, "Middle"],
|
|
|
349 |
)
|
350 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
351 |
|
352 |
+
target_ratio.change(
|
353 |
+
fn=preload_presets,
|
354 |
+
inputs=[target_ratio, width_slider, height_slider],
|
355 |
+
outputs=[width_slider, height_slider, settings_panel],
|
356 |
+
queue=False
|
357 |
+
)
|
358 |
+
|
359 |
+
width_slider.change(
|
360 |
+
fn=select_the_right_preset,
|
361 |
+
inputs=[width_slider, height_slider],
|
362 |
+
outputs=[target_ratio],
|
363 |
+
queue=False
|
364 |
+
)
|
365 |
+
|
366 |
+
height_slider.change(
|
367 |
+
fn=select_the_right_preset,
|
368 |
+
inputs=[width_slider, height_slider],
|
369 |
+
outputs=[target_ratio],
|
370 |
+
queue=False
|
371 |
+
)
|
372 |
+
|
373 |
+
resize_option.change(
|
374 |
+
fn=toggle_custom_resize_slider,
|
375 |
+
inputs=[resize_option],
|
376 |
+
outputs=[custom_resize_percentage],
|
377 |
+
queue=False
|
378 |
+
)
|
379 |
+
|
380 |
+
run_button.click(
|
381 |
+
fn=clear_result,
|
382 |
+
inputs=None,
|
383 |
+
outputs=result,
|
384 |
+
).then(
|
385 |
+
fn=infer,
|
386 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
387 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
388 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector],
|
389 |
+
outputs=result,
|
390 |
+
).then(
|
391 |
+
fn=lambda x, history: update_history(x, history),
|
392 |
+
inputs=[result, history_gallery],
|
393 |
+
outputs=history_gallery,
|
394 |
+
)
|
395 |
+
|
396 |
+
prompt_input.submit(
|
397 |
+
fn=clear_result,
|
398 |
+
inputs=None,
|
399 |
+
outputs=result,
|
400 |
+
).then(
|
401 |
+
fn=infer,
|
402 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
403 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
404 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom, model_selector],
|
405 |
+
outputs=result,
|
406 |
+
).then(
|
407 |
+
fn=lambda x, history: update_history(x, history),
|
408 |
+
inputs=[result, history_gallery],
|
409 |
+
outputs=history_gallery,
|
410 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)
|