Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,951 Bytes
2741d7d cc33eaf 4425d90 2741d7d cc33eaf 2741d7d cc33eaf 4425d90 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d 7f06ad0 6ba3a4f cc33eaf 6ba3a4f cc33eaf 2741d7d 4425d90 2741d7d cc33eaf 2741d7d cc33eaf 4425d90 cc33eaf 2741d7d 4425d90 cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d cc33eaf 2741d7d b8a0d2d 91d2c01 6ba3a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import random
import uuid
import json
import time
import re
from threading import Thread
from datetime import datetime, timedelta
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import hf_hub_download
# -----------------------------------------------------------------------------
# Constants & Device Setup
# -----------------------------------------------------------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# -----------------------------------------------------------------------------
# Helper Functions
# -----------------------------------------------------------------------------
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def load_system_prompt(repo_id: str, filename: str) -> str:
"""
Download and load a system prompt template from the given Hugging Face repo.
The template may include placeholders (e.g. {name}, {today}, {yesterday}) that get formatted.
"""
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
def downsample_video(video_path: str):
"""
Extracts 10 evenly spaced frames from the video.
Returns a list of tuples (PIL.Image, timestamp_in_seconds).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames > 0 and fps > 0:
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def build_prompt(chat_history, current_input_text, video_frames=None, image_files=None):
"""
Build a conversation prompt string.
The system prompt is added first, then previous chat history, and finally the current input.
If video_frames or image_files are provided, a note is added in the prompt.
"""
prompt = f"System: {SYSTEM_PROMPT}\n"
# Append chat history (if any)
for msg in chat_history:
role = msg.get("role", "").capitalize()
content = msg.get("content", "")
prompt += f"{role}: {content}\n"
prompt += f"User: {current_input_text}\n"
if video_frames:
for _, timestamp in video_frames:
prompt += f"[Video Frame at {timestamp} sec]\n"
if image_files:
for _ in image_files:
prompt += "[Image Input]\n"
prompt += "Assistant: "
return prompt
# -----------------------------------------------------------------------------
# Load Mistral Model & System Prompt
# -----------------------------------------------------------------------------
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
).to(device)
model.eval()
# -----------------------------------------------------------------------------
# Main Generation Function
# -----------------------------------------------------------------------------
def generate(
input_dict: dict,
chat_history: list,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict.get("text", "")
files = input_dict.get("files", [])
# Separate video files from images based on file extension.
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
video_files = [f for f in files if str(f).lower().endswith(video_extensions)]
image_files = [f for f in files if not str(f).lower().endswith(video_extensions)]
video_frames = None
if video_files:
# Process the first video file.
video_path = video_files[0]
video_frames = downsample_video(video_path)
# Build the full prompt from the system prompt, chat history, current text, and file inputs.
prompt = build_prompt(chat_history, text, video_frames, image_files)
# Tokenize the prompt.
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Set up a streamer for incremental output.
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=20.0)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
}
# Launch generation in a separate thread.
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Mistral")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# -----------------------------------------------------------------------------
# Gradio Interface
# -----------------------------------------------------------------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[{"text": "Describe the content of the video.", "files": ["examples/sample_video.mp4"]}],
[{"text": "Explain what is in this image.", "files": ["examples/sample_image.jpg"]}],
["Tell me a fun fact about space."],
],
cache_examples=False,
type="messages",
description="# **Mistral Chatbot with Video Inference**\nA chatbot built with Mistral (via Transformers) that supports text, image, and video (frame extraction) inputs.",
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Type your message here. Optionally attach images or video."
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)
|