File size: 7,951 Bytes
2741d7d
cc33eaf
4425d90
2741d7d
 
cc33eaf
2741d7d
cc33eaf
4425d90
2741d7d
cc33eaf
2741d7d
 
cc33eaf
 
2741d7d
 
 
cc33eaf
2741d7d
cc33eaf
 
 
2741d7d
cc33eaf
 
 
2741d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc33eaf
 
 
 
2741d7d
cc33eaf
 
 
 
 
 
 
 
 
 
 
 
2741d7d
 
 
 
 
cc33eaf
 
 
 
 
 
 
 
 
 
2741d7d
 
 
cc33eaf
2741d7d
cc33eaf
 
 
2741d7d
cc33eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741d7d
 
cc33eaf
2741d7d
 
 
7f06ad0
6ba3a4f
cc33eaf
 
 
6ba3a4f
 
cc33eaf
 
2741d7d
 
 
 
4425d90
2741d7d
 
cc33eaf
 
2741d7d
 
cc33eaf
4425d90
cc33eaf
2741d7d
4425d90
cc33eaf
2741d7d
cc33eaf
 
2741d7d
cc33eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741d7d
 
cc33eaf
 
 
 
2741d7d
 
 
cc33eaf
2741d7d
 
 
 
cc33eaf
 
 
2741d7d
cc33eaf
2741d7d
 
cc33eaf
 
 
2741d7d
 
 
cc33eaf
2741d7d
 
 
 
 
cc33eaf
2741d7d
 
cc33eaf
2741d7d
b8a0d2d
91d2c01
6ba3a4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import random
import uuid
import json
import time
import re
from threading import Thread
from datetime import datetime, timedelta

import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import hf_hub_download

# -----------------------------------------------------------------------------
# Constants & Device Setup
# -----------------------------------------------------------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# -----------------------------------------------------------------------------
# Helper Functions
# -----------------------------------------------------------------------------
def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def load_system_prompt(repo_id: str, filename: str) -> str:
    """
    Download and load a system prompt template from the given Hugging Face repo.
    The template may include placeholders (e.g. {name}, {today}, {yesterday}) that get formatted.
    """
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    today = datetime.today().strftime("%Y-%m-%d")
    yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
    model_name = repo_id.split("/")[-1]
    return system_prompt.format(name=model_name, today=today, yesterday=yesterday)

def downsample_video(video_path: str):
    """
    Extracts 10 evenly spaced frames from the video.
    Returns a list of tuples (PIL.Image, timestamp_in_seconds).
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames > 0 and fps > 0:
        frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
        for i in frame_indices:
            vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
            success, image = vidcap.read()
            if success:
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                pil_image = Image.fromarray(image)
                timestamp = round(i / fps, 2)
                frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def build_prompt(chat_history, current_input_text, video_frames=None, image_files=None):
    """
    Build a conversation prompt string.
    The system prompt is added first, then previous chat history, and finally the current input.
    If video_frames or image_files are provided, a note is added in the prompt.
    """
    prompt = f"System: {SYSTEM_PROMPT}\n"
    # Append chat history (if any)
    for msg in chat_history:
        role = msg.get("role", "").capitalize()
        content = msg.get("content", "")
        prompt += f"{role}: {content}\n"
    prompt += f"User: {current_input_text}\n"
    if video_frames:
        for _, timestamp in video_frames:
            prompt += f"[Video Frame at {timestamp} sec]\n"
    if image_files:
        for _ in image_files:
            prompt += "[Image Input]\n"
    prompt += "Assistant: "
    return prompt

# -----------------------------------------------------------------------------
# Load Mistral Model & System Prompt
# -----------------------------------------------------------------------------
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True
).to(device)
model.eval()

# -----------------------------------------------------------------------------
# Main Generation Function
# -----------------------------------------------------------------------------
def generate(
    input_dict: dict,
    chat_history: list,
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    text = input_dict.get("text", "")
    files = input_dict.get("files", [])
    
    # Separate video files from images based on file extension.
    video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
    video_files = [f for f in files if str(f).lower().endswith(video_extensions)]
    image_files = [f for f in files if not str(f).lower().endswith(video_extensions)]
    
    video_frames = None
    if video_files:
        # Process the first video file.
        video_path = video_files[0]
        video_frames = downsample_video(video_path)
    
    # Build the full prompt from the system prompt, chat history, current text, and file inputs.
    prompt = build_prompt(chat_history, text, video_frames, image_files)
    
    # Tokenize the prompt.
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    # Set up a streamer for incremental output.
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=20.0)
    
    generation_kwargs = {
        "input_ids": inputs["input_ids"],
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "streamer": streamer,
    }
    
    # Launch generation in a separate thread.
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    buffer = ""
    yield progress_bar_html("Processing with Mistral")
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# -----------------------------------------------------------------------------
# Gradio Interface
# -----------------------------------------------------------------------------
demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [{"text": "Describe the content of the video.", "files": ["examples/sample_video.mp4"]}],
        [{"text": "Explain what is in this image.", "files": ["examples/sample_image.jpg"]}],
        ["Tell me a fun fact about space."],
    ],
    cache_examples=False,
    type="messages",
    description="# **Mistral Chatbot with Video Inference**\nA chatbot built with Mistral (via Transformers) that supports text, image, and video (frame extraction) inputs.",
    fill_height=True,
    textbox=gr.MultimodalTextbox(
        label="Query Input",
        file_types=["image", "video"],
        file_count="multiple",
        placeholder="Type your message here. Optionally attach images or video."
    ),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)