File size: 4,461 Bytes
b8a0d2d
2c8da8a
8716c2f
f5ecaf8
8081540
9a23baa
f5ecaf8
 
8081540
9a23baa
2c8da8a
 
 
9a23baa
 
9dc7658
dec51b2
9a23baa
 
 
 
9dc7658
9a23baa
9dc7658
9a23baa
 
 
 
 
86a82e4
9a23baa
9dc7658
9a23baa
 
9dc7658
9a23baa
 
9dc7658
9a23baa
 
 
 
 
 
 
 
 
 
9dc7658
9a23baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc7658
9a23baa
 
 
9dc7658
8716c2f
9a23baa
d9dde0d
f5ecaf8
8716c2f
f5ecaf8
8716c2f
f5ecaf8
 
9a23baa
86a82e4
 
9a23baa
 
 
9dc7658
86a82e4
9a23baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a82e4
b8a0d2d
9a23baa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForImageTextToText, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces

# Load processor and model
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
    "HuggingFaceTB/SmolVLM2-2.2B-Instruct", 
    torch_dtype=torch.bfloat16,
).to("cuda")

@spaces.GPU
def model_inference(
    input_dict, history, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
): 
    text = input_dict["text"]
    print(input_dict["files"])
    
    # Process input images if provided.
    if len(input_dict["files"]) > 1:
        images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
    elif len(input_dict["files"]) == 1:
        images = [Image.open(input_dict["files"][0]).convert("RGB")]
    else:
        images = []
    
    # Validate input
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")
    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
    
    # Prepare prompt using the chat template.
    resulting_messages = [{
        "role": "user",
        "content": [{"type": "image"} for _ in range(len(images))] + [
            {"type": "text", "text": text}
        ]
    }]
    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}
    
    # Setup generation parameters.
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
    }
    assert decoding_strategy in ["Greedy", "Top P Sampling"]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)
    
    # Generate output with a streaming approach.
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""

    thread = Thread(target=model.generate, kwargs=generation_args)
    thread.start()

    yield "..."
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# Define the ChatInterface without examples.
demo = gr.ChatInterface(
    fn=model_inference,
    title="SmolVLM: Small yet Mighty 💫",
    description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text.",
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    additional_inputs=[
        gr.Radio(
            ["Top P Sampling", "Greedy"],
            value="Greedy",
            label="Decoding strategy",
            info="Higher values is equivalent to sampling more low-probability tokens.",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=5.0,
            value=0.4,
            step=0.1,
            interactive=True,
            label="Sampling temperature",
            info="Higher values will produce more diverse outputs.",
        ),
        gr.Slider(
            minimum=8,
            maximum=1024,
            value=512,
            step=1,
            interactive=True,
            label="Maximum number of new tokens to generate",
        ),
        gr.Slider(
            minimum=0.01,
            maximum=5.0,
            value=1.2,
            step=0.01,
            interactive=True,
            label="Repetition penalty",
            info="1.0 is equivalent to no penalty",
        ),
        gr.Slider(
            minimum=0.01,
            maximum=0.99,
            value=0.8,
            step=0.01,
            interactive=True,
            label="Top P",
            info="Higher values is equivalent to sampling more low-probability tokens.",
        )
    ],
    cache_examples=False
)

demo.launch(debug=True)