Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,810 Bytes
7d955b3 5001e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageDraw
import cv2
import re
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_T = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
draw = ImageDraw.Draw(image)
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
return image
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
x_scale = original_width / scaled_width
y_scale = original_height / scaled_height
rescaled_boxes = []
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
rescaled_box = [
xmin * x_scale,
ymin * y_scale,
xmax * x_scale,
ymax * y_scale
]
rescaled_boxes.append(rescaled_box)
return rescaled_boxes
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def run_object_detection(model_name: str, image: Image.Image, text_input: str, system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_t
model = model_t
else:
return "Invalid model selected.", "", image
if image is None:
return "Please upload an image.", "", image
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": system_prompt},
{"type": "text", "text": text_input},
{"type": "image", "image": image},
],
}
]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
generated_ids = model.generate(**inputs, **generation_kwargs)
generated_ids_trimmed = generated_ids[:, inputs["input_ids"].shape[1]:]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
matches = re.findall(pattern, output_text)
parsed_boxes = [[int(num) for num in match] for match in matches]
original_width, original_height = image.size
scaled_boxes = rescale_bounding_boxes(parsed_boxes, original_width, original_height)
annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes)
return output_text, str(parsed_boxes), annotated_image
# Define examples for image and video inference
image_examples = [
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
# Define examples for object detection
default_system_prompt = "You are a helpful assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
object_detection_examples = [
["images/3.png", "Detect all text blocks", default_system_prompt],
["images/4.png", "Find all images", default_system_prompt],
["images/1.png", "Locate the headers", default_system_prompt],
["images/2.png", "Detect the chart", default_system_prompt],
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Doc-VLMs-v2-Localization](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
with gr.Tabs():
with gr.TabItem("Image Inference"):
with gr.Row():
with gr.Column():
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.Column():
output_image = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output_image = gr.Markdown(label="Formatted Result (Result.Md)")
with gr.TabItem("Video Inference"):
with gr.Row():
with gr.Column():
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Column():
output_video = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output_video = gr.Markdown(label="Formatted Result (Result.Md)")
with gr.TabItem("Object Detection"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil")
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt)
text_input = gr.Textbox(label="User Prompt")
object_detection_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=object_detection_examples,
inputs=[input_img, text_input, system_prompt]
)
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
parsed_boxes = gr.Textbox(label="Parsed Boxes")
annotated_image = gr.Image(label="Annotated Image")
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output_image, markdown_output_image]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output_video, markdown_output_video]
)
object_detection_submit.click(
fn=run_object_detection,
inputs=[model_choice, input_img, text_input, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[model_output_text, parsed_boxes, annotated_image]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |