Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,291 Bytes
f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b a68aebf f48789b c8bfa70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
Gemma3ForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Optionally enable synchronous CUDA errors for debugging:
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# -------------------------------------------------------------------
# Load models and processors
# -------------------------------------------------------------------
# VIREX (Video Information Retrieval & Extraction)
MODEL_ID_VIREX = "prithivMLmods/VIREX-062225-exp"
processor_virex = AutoProcessor.from_pretrained(MODEL_ID_VIREX, trust_remote_code=True)
model_virex = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_VIREX,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# DREX (Document Retrieval & Extraction Expert)
MODEL_ID_DREX = "prithivMLmods/DREX-062225-exp"
processor_drex = AutoProcessor.from_pretrained(MODEL_ID_DREX, trust_remote_code=True)
model_drex = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_DREX,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Typhoon-OCR-3B (Thai/English OCR parser)
MODEL_ID_TYPHOON = "sarvamai/sarvam-translate"
processor_typhoon = AutoProcessor.from_pretrained(MODEL_ID_TYPHOON, trust_remote_code=True)
model_typhoon = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID_TYPHOON,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# olmOCR-7B-0225-preview (document OCR + LaTeX)
MODEL_ID_OLM = "allenai/olmOCR-7B-0225-preview"
processor_olm = AutoProcessor.from_pretrained(MODEL_ID_OLM, trust_remote_code=True)
model_olm = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_OLM,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# -------------------------------------------------------------------
# Video downsampling helper
# -------------------------------------------------------------------
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Returns a list of (PIL.Image, timestamp) tuples.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS) or 30.0
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for idx in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)
success, img = vidcap.read()
if not success:
continue
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
frames.append((Image.fromarray(img), round(idx / fps, 2)))
vidcap.release()
return frames
# -------------------------------------------------------------------
# Generation loops
# -------------------------------------------------------------------
def _make_generation_kwargs(processor, inputs, streamer, max_new_tokens, do_sample=False, temperature=1.0, top_p=1.0, top_k=0, repetition_penalty=1.0):
# ensure pad/eos tokens are defined
tok = processor.tokenizer
return {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tok.eos_token_id,
"eos_token_id": tok.eos_token_id,
}
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
# select
if model_name.startswith("VIREX"):
processor, model = processor_virex, model_virex
elif model_name.startswith("DREX"):
processor, model = processor_drex, model_drex
elif model_name.startswith("olmOCR"):
processor, model = processor_olm, model_olm
elif model_name.startswith("Typhoon"):
processor, model = processor_typhoon, model_typhoon
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", ""
return
# build the chat-style prompt
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = _make_generation_kwargs(
processor, inputs, streamer, max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty
)
# launch
Thread(target=model.generate, kwargs=gen_kwargs).start()
buffer = ""
for chunk in streamer:
buffer += chunk
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
# select model
if model_name.startswith("VIREX"):
processor, model = processor_virex, model_virex
elif model_name.startswith("DREX"):
processor, model = processor_drex, model_drex
elif model_name.startswith("olmOCR"):
processor, model = processor_olm, model_olm
elif model_name.startswith("Typhoon"):
processor, model = processor_typhoon, model_typhoon
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", ""
return
# downsample frames
frames = downsample_video(video_path)
# system + user
messages = [
{"role": "system", "content": [{"type":"text", "text":"You are a helpful assistant."}]},
{"role": "user", "content": [{"type":"text", "text": text}]}
]
for img, ts in frames:
messages[1]["content"].append({"type":"text", "text":f"Frame {ts}s:"})
messages[1]["content"].append({"type":"image", "image":img})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = _make_generation_kwargs(
processor, inputs, streamer, max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty
)
Thread(target=model.generate, kwargs=gen_kwargs).start()
buffer = ""
for chunk in streamer:
buffer += chunk.replace("<|im_end|>", "")
yield buffer, buffer
# -------------------------------------------------------------------
# Examples, CSS, and launch
# -------------------------------------------------------------------
image_examples = [
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Result Canvas")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
model_choice = gr.Radio(
choices=["DREX-062225-7B-exp", "olmOCR-7B-0225-preview", "VIREX-062225-7B-exp", "Typhoon-OCR-3B"],
label="Select Model",
value="DREX-062225-7B-exp"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs/discussions)")
gr.Markdown("> [DREX-062225-7B-exp](https://huggingface.co/prithivMLmods/DREX-062225-exp): ...")
gr.Markdown("> [VIREX-062225-7B-exp](https://huggingface.co/prithivMLmods/VIREX-062225-exp): ...")
gr.Markdown("> [Typhoon-OCR-3B](https://huggingface.co/scb10x/typhoon-ocr-3b): ...")
gr.Markdown("> [olmOCR-7B-0225](https://huggingface.co/allenai/olmOCR-7B-0225-preview): ...")
gr.Markdown("> ⚠️ note: video inference may be less reliable.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |