File size: 12,291 Bytes
f48789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a68aebf
 
 
f48789b
 
 
 
 
 
 
a68aebf
 
 
 
 
 
 
 
 
f48789b
 
 
 
a68aebf
 
 
 
 
f48789b
 
 
 
a68aebf
 
 
 
 
f48789b
 
 
 
a68aebf
 
 
 
 
f48789b
 
 
 
a68aebf
 
 
f48789b
 
a68aebf
 
f48789b
 
 
a68aebf
f48789b
 
a68aebf
 
 
 
 
 
 
f48789b
 
 
a68aebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48789b
 
a68aebf
f48789b
 
 
 
a68aebf
 
 
 
 
 
 
 
 
f48789b
 
 
 
 
a68aebf
f48789b
 
a68aebf
f48789b
 
 
 
a68aebf
f48789b
 
a68aebf
f48789b
a68aebf
f48789b
 
 
 
 
 
a68aebf
f48789b
a68aebf
 
 
 
 
 
 
 
 
 
 
f48789b
a68aebf
 
f48789b
 
 
 
a68aebf
f48789b
 
 
 
a68aebf
 
 
 
 
 
 
 
 
f48789b
 
 
 
 
a68aebf
f48789b
 
a68aebf
f48789b
a68aebf
 
f48789b
a68aebf
 
f48789b
a68aebf
 
 
 
f48789b
 
 
 
 
 
 
 
 
a68aebf
f48789b
a68aebf
 
 
 
 
 
 
 
 
 
f48789b
a68aebf
 
f48789b
 
a68aebf
 
 
f48789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a68aebf
 
 
 
f48789b
a68aebf
f48789b
 
a68aebf
 
f48789b
a68aebf
 
 
 
f48789b
 
a68aebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48789b
 
 
 
 
 
 
 
 
 
 
 
c8bfa70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    Gemma3ForConditionalGeneration,
    AutoModelForImageTextToText,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Optionally enable synchronous CUDA errors for debugging:
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# -------------------------------------------------------------------
# Load models and processors
# -------------------------------------------------------------------

# VIREX (Video Information Retrieval & Extraction)
MODEL_ID_VIREX = "prithivMLmods/VIREX-062225-exp"
processor_virex = AutoProcessor.from_pretrained(MODEL_ID_VIREX, trust_remote_code=True)
model_virex = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_VIREX,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# DREX (Document Retrieval & Extraction Expert)
MODEL_ID_DREX = "prithivMLmods/DREX-062225-exp"
processor_drex = AutoProcessor.from_pretrained(MODEL_ID_DREX, trust_remote_code=True)
model_drex = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_DREX,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Typhoon-OCR-3B (Thai/English OCR parser)
MODEL_ID_TYPHOON = "sarvamai/sarvam-translate"
processor_typhoon = AutoProcessor.from_pretrained(MODEL_ID_TYPHOON, trust_remote_code=True)
model_typhoon = Gemma3ForConditionalGeneration.from_pretrained(
    MODEL_ID_TYPHOON,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# olmOCR-7B-0225-preview (document OCR + LaTeX)
MODEL_ID_OLM = "allenai/olmOCR-7B-0225-preview"
processor_olm = AutoProcessor.from_pretrained(MODEL_ID_OLM, trust_remote_code=True)
model_olm = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_OLM,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# -------------------------------------------------------------------
# Video downsampling helper
# -------------------------------------------------------------------
def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Returns a list of (PIL.Image, timestamp) tuples.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS) or 30.0
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for idx in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        success, img = vidcap.read()
        if not success:
            continue
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        frames.append((Image.fromarray(img), round(idx / fps, 2)))
    vidcap.release()
    return frames

# -------------------------------------------------------------------
# Generation loops
# -------------------------------------------------------------------
def _make_generation_kwargs(processor, inputs, streamer, max_new_tokens, do_sample=False, temperature=1.0, top_p=1.0, top_k=0, repetition_penalty=1.0):
    # ensure pad/eos tokens are defined
    tok = processor.tokenizer
    return {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": do_sample,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "pad_token_id": tok.eos_token_id,
        "eos_token_id": tok.eos_token_id,
    }

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    # select
    if model_name.startswith("VIREX"):
        processor, model = processor_virex, model_virex
    elif model_name.startswith("DREX"):
        processor, model = processor_drex, model_drex
    elif model_name.startswith("olmOCR"):
        processor, model = processor_olm, model_olm
    elif model_name.startswith("Typhoon"):
        processor, model = processor_typhoon, model_typhoon
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", ""
        return

    # build the chat-style prompt
    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text",  "text": text},
        ]
    }]
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = _make_generation_kwargs(
        processor, inputs, streamer, max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty
    )

    # launch
    Thread(target=model.generate, kwargs=gen_kwargs).start()
    buffer = ""
    for chunk in streamer:
        buffer += chunk
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    # select model
    if model_name.startswith("VIREX"):
        processor, model = processor_virex, model_virex
    elif model_name.startswith("DREX"):
        processor, model = processor_drex, model_drex
    elif model_name.startswith("olmOCR"):
        processor, model = processor_olm, model_olm
    elif model_name.startswith("Typhoon"):
        processor, model = processor_typhoon, model_typhoon
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", ""
        return

    # downsample frames
    frames = downsample_video(video_path)

    # system + user
    messages = [
        {"role": "system", "content": [{"type":"text", "text":"You are a helpful assistant."}]},
        {"role": "user",   "content": [{"type":"text", "text": text}]}
    ]
    for img, ts in frames:
        messages[1]["content"].append({"type":"text", "text":f"Frame {ts}s:"})
        messages[1]["content"].append({"type":"image", "image":img})

    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = _make_generation_kwargs(
        processor, inputs, streamer, max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty
    )

    Thread(target=model.generate, kwargs=gen_kwargs).start()
    buffer = ""
    for chunk in streamer:
        buffer += chunk.replace("<|im_end|>", "")
        yield buffer, buffer

# -------------------------------------------------------------------
# Examples, CSS, and launch
# -------------------------------------------------------------------
image_examples = [
    ["Convert this page to doc [text] precisely.", "images/3.png"],
    ["Convert this page to doc [text] precisely.", "images/4.png"],
    ["Convert this page to doc [text] precisely.", "images/1.png"],
    ["Convert chart to OTSL.", "images/2.png"]
]

video_examples = [
    ["Explain the video in detail.", "videos/2.mp4"],
    ["Explain the ad in detail.", "videos/1.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
.canvas-output {
    border: 2px solid #4682B4;
    border-radius: 10px;
    padding: 20px;
}
"""

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query   = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload  = gr.Image(type="pil", label="Image")
                    image_submit  = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
                with gr.TabItem("Video Inference"):
                    video_query  = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens     = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature        = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p              = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k              = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        with gr.Column(elem_classes="canvas-output"):
            gr.Markdown("## Result Canvas")
            output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
            markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")

        model_choice = gr.Radio(
            choices=["DREX-062225-7B-exp", "olmOCR-7B-0225-preview", "VIREX-062225-7B-exp", "Typhoon-OCR-3B"],
            label="Select Model",
            value="DREX-062225-7B-exp"
        )

        gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs/discussions)")
        gr.Markdown("> [DREX-062225-7B-exp](https://huggingface.co/prithivMLmods/DREX-062225-exp): ...")
        gr.Markdown("> [VIREX-062225-7B-exp](https://huggingface.co/prithivMLmods/VIREX-062225-exp): ...")
        gr.Markdown("> [Typhoon-OCR-3B](https://huggingface.co/scb10x/typhoon-ocr-3b): ...")
        gr.Markdown("> [olmOCR-7B-0225](https://huggingface.co/allenai/olmOCR-7B-0225-preview): ...")
        gr.Markdown("> ⚠️ note: video inference may be less reliable.")

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)