File size: 14,350 Bytes
cff3d4f
 
 
 
 
 
 
 
 
6ee09b1
9810ea7
cff3d4f
7019b95
cff3d4f
 
 
 
94d3a2b
 
cff3d4f
94d3a2b
cff3d4f
 
08d30fe
7019b95
 
914bd4d
 
 
 
cff3d4f
914bd4d
 
cff3d4f
96784fc
cff3d4f
9810ea7
94d3a2b
 
 
 
 
 
 
 
9810ea7
7019b95
94d3a2b
 
 
 
 
 
 
 
 
 
 
 
 
7019b95
c0d8624
 
b1b6025
c0d8624
b1b6025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7019b95
 
 
 
 
59ff1ca
 
 
 
 
 
 
7019b95
 
59ff1ca
 
 
 
7019b95
59ff1ca
 
 
 
7019b95
59ff1ca
 
 
9810ea7
cff3d4f
59ff1ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff3d4f
364cb51
94d3a2b
 
 
 
 
 
 
59ff1ca
e29072f
 
 
 
 
 
 
 
 
 
15ef36d
b1b6025
 
c97526c
e29072f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ff1ca
e29072f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7019b95
a3d42ff
94d3a2b
 
 
 
 
 
59ff1ca
e29072f
 
 
 
 
 
 
 
 
 
15ef36d
b1b6025
 
94d3a2b
e29072f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914bd4d
e29072f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ff1ca
 
94d3a2b
2c3ed11
 
 
9279ec9
 
 
fe50386
94d3a2b
59ff1ca
94d3a2b
 
 
 
 
ec311e6
 
 
 
 
 
 
 
 
94d3a2b
59ff1ca
ec311e6
 
94d3a2b
 
 
 
914bd4d
94d3a2b
 
29d805e
 
0c22ab6
29d805e
94d3a2b
a71db69
94d3a2b
 
29d805e
 
 
 
914bd4d
94d3a2b
 
 
 
 
 
914bd4d
 
64a753b
914bd4d
64a753b
914bd4d
59ff1ca
94d3a2b
 
 
 
 
 
 
 
 
 
9810ea7
 
03a4989
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Load typhoon-ocr-7b
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_L,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

#--------------------------------------------------#
# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()
#--------------------------------------------------#

# Preprocessing functions for SmolDocling-256M
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))  # Top-left corner
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded_image

def normalize_values(text, target_max=500):
    """Normalize numerical values in text to a target maximum."""
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        num_list = ast.literal_eval(match.group(0))
        normalized = normalize_list(num_list)
        return "".join([f"<loc_{num}>" for num in normalized])

    pattern = r"\[([\d\.\s,]+)\]"
    normalized_text = re.sub(pattern, process_match, text)
    return normalized_text

def downsample_video(video_path):
    """Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """Generate responses for image input using the selected model."""
    # Model selection
    if model_name == "Nanonets-OCR-s":
        processor = processor_m
        model = model_m
    elif model_name == "MonkeyOCR-Recognition":
        processor = processor_g
        model = model_g
    elif model_name == "SmolDocling-256M-preview":
        processor = processor_x
        model = model_x
    elif model_name == "Typhoon-OCR-7B":
        processor = processor_l
        model = model_l
    else:
        yield "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image."
        return

    # Prepare images as a list (single image for image inference)
    images = [image]

    # SmolDocling-256M specific preprocessing
    if model_name == "SmolDocling-256M-preview":
        if "OTSL" in text or "code" in text:
            images = [add_random_padding(img) for img in images]
        if "OCR at text at" in text or "Identify element" in text or "formula" in text:
            text = normalize_values(text, target_max=500)

    # Unified message structure for all models
    messages = [
        {
            "role": "user",
            "content": [{"type": "image"} for _ in images] + [
                {"type": "text", "text": text}
            ]
        }
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

    # Generation with streaming
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream output and collect full response
    buffer = ""
    full_output = ""
    for new_text in streamer:
        full_output += new_text
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer

    # SmolDocling-256M specific postprocessing
    if model_name == "SmolDocling-256M-preview":
        cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
        if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
            if "<chart>" in cleaned_output:
                cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
            doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
            doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
            markdown_output = doc.export_to_markdown()
            yield f"**MD Output:**\n\n{markdown_output}"
        else:
            yield cleaned_output

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """Generate responses for video input using the selected model."""
    # Model selection
    if model_name == "Nanonets-OCR-s":
        processor = processor_m
        model = model_m
    elif model_name == "MonkeyOCR-Recognition":
        processor = processor_g
        model = model_g
    elif model_name == "SmolDocling-256M-preview":
        processor = processor_x
        model = model_x
    elif model_name == "Typhoon-OCR-7B":
        processor = processor_l
        model = model_l
    else:
        yield "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video."
        return

    # Extract frames from video
    frames = downsample_video(video_path)
    images = [frame for frame, _ in frames]

    # SmolDocling-256M specific preprocessing
    if model_name == "SmolDocling-256M-preview":
        if "OTSL" in text or "code" in text:
            images = [add_random_padding(img) for img in images]
        if "OCR at text at" in text or "Identify element" in text or "formula" in text:
            text = normalize_values(text, target_max=500)

    # Unified message structure for all models
    messages = [
        {
            "role": "user",
            "content": [{"type": "image"} for _ in images] + [
                {"type": "text", "text": text}
            ]
        }
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

    # Generation with streaming
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream output and collect full response
    buffer = ""
    full_output = ""
    for new_text in streamer:
        full_output += new_text
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer

    # SmolDocling-256M specific postprocessing
    if model_name == "SmolDocling-256M-preview":
        cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
        if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
            if "<chart>" in cleaned_output:
                cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
                cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
            doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
            doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
            markdown_output = doc.export_to_markdown()
            yield f"**MD Output:**\n\n{markdown_output}"
        else:
            yield cleaned_output

# Define examples for image and video inference
image_examples = [
    ["Convert this page to docling", "images/1.png"],
    ["OCR the image", "images/2.jpg"],
    ["Convert this page to docling", "images/3.png"],
    ["Convert chart to OTSL.", "images/4.png"],
    ["Convert code to text", "images/5.jpg"],
    ["Convert this table to OTSL.", "images/6.jpg"],
    ["Convert formula to late.", "images/7.jpg"],
]

video_examples = [
    ["Explain the ad in detail", "example/1.mp4"],
    ["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
            model_choice = gr.Radio(
                choices=["SmolDocling-256M-preview", "Nanonets-OCR-s", "MonkeyOCR-Recognition", "Typhoon-OCR-7B"],
                label="Select Model",
                value="SmolDocling-256M-preview"
            )
            
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)