File size: 4,213 Bytes
50fda8e
 
b8a0d2d
81c4296
 
 
 
 
 
 
b8a0d2d
81c4296
 
50fda8e
ed8a649
 
50fda8e
 
81c4296
50fda8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c4296
 
 
 
 
 
 
 
 
 
 
b8a0d2d
81c4296
 
 
50fda8e
81c4296
 
 
 
 
 
b8a0d2d
81c4296
 
 
 
 
 
b8a0d2d
81c4296
 
 
 
 
 
 
 
 
 
 
50fda8e
 
81c4296
 
 
 
 
 
 
 
 
 
b8a0d2d
81c4296
 
 
 
 
50fda8e
81c4296
 
 
 
 
50fda8e
 
 
 
81c4296
 
50fda8e
 
 
81c4296
 
 
 
 
 
 
50fda8e
81c4296
b8a0d2d
50fda8e
 
 
b8a0d2d
50fda8e
81c4296
b8a0d2d
81c4296
 
b8a0d2d
 
50fda8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import time
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

# Define model details
MODEL_REPO = "prithivMLmods/Sombrero-QwQ-32B-Elite10-Fixed-Q2_K-GGUF"
MODEL_FILENAME = "sombrero-qwq-32b-elite10-fixed-q2_k.gguf"
MODEL_DIR = "./models"
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILENAME)

# Ensure the model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)

# Download the model if not already present
if not os.path.exists(MODEL_PATH):
    print("Downloading the model... This may take some time.")
    try:
        hf_hub_download(
            repo_id=MODEL_REPO,
            filename=MODEL_FILENAME,
            local_dir=MODEL_DIR
        )
        print("Model downloaded successfully!")
    except Exception as e:
        print(f"Error downloading model: {e}")
        exit(1)

# Ensure model is fully downloaded before using
while not os.path.exists(MODEL_PATH):
    print("Waiting for model to be available...")
    time.sleep(5)

# Function to handle AI responses
@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    llm = Llama(
        model_path=MODEL_PATH,
        flash_attn=True,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=8192,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {'role': Roles.user, 'content': msn[0]}
        assistant = {'role': Roles.assistant, 'content': msn[1]}
        messages.add_message(user)
        messages.add_message(assistant)

    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )

    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

# Function to create Gradio interface
def create_interface(model_name, description):
    return gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value=model_name, label="Model", interactive=False),
            gr.Textbox(
                value="You are a helpful assistant. You should think step-by-step. You should answer all questions by prioritizing the principle of openness",
                label="System message"
            ),
            gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
            gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
            gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
        ],
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn="Send",
        title=f"{model_name}",
        description=description,
        chatbot=gr.Chatbot(scale=1, likeable=False, show_copy_button=True)
    )

# Set interface description
description = """<p align="center">Viper-Coder-32B-Elite13-GGUF</p>"""
interface = create_interface(MODEL_REPO, description)

# Create Gradio Blocks app
demo = gr.Blocks()

with demo:
    interface.render()

if __name__ == "__main__":
    demo.launch(share=True)