Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,213 Bytes
50fda8e b8a0d2d 81c4296 b8a0d2d 81c4296 50fda8e ed8a649 50fda8e 81c4296 50fda8e 81c4296 b8a0d2d 81c4296 50fda8e 81c4296 b8a0d2d 81c4296 b8a0d2d 81c4296 50fda8e 81c4296 b8a0d2d 81c4296 50fda8e 81c4296 50fda8e 81c4296 50fda8e 81c4296 50fda8e 81c4296 b8a0d2d 50fda8e b8a0d2d 50fda8e 81c4296 b8a0d2d 81c4296 b8a0d2d 50fda8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import time
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
# Define model details
MODEL_REPO = "prithivMLmods/Sombrero-QwQ-32B-Elite10-Fixed-Q2_K-GGUF"
MODEL_FILENAME = "sombrero-qwq-32b-elite10-fixed-q2_k.gguf"
MODEL_DIR = "./models"
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILENAME)
# Ensure the model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)
# Download the model if not already present
if not os.path.exists(MODEL_PATH):
print("Downloading the model... This may take some time.")
try:
hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir=MODEL_DIR
)
print("Model downloaded successfully!")
except Exception as e:
print(f"Error downloading model: {e}")
exit(1)
# Ensure model is fully downloaded before using
while not os.path.exists(MODEL_PATH):
print("Waiting for model to be available...")
time.sleep(5)
# Function to handle AI responses
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
llm = Llama(
model_path=MODEL_PATH,
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
# Function to create Gradio interface
def create_interface(model_name, description):
return gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=model_name, label="Model", interactive=False),
gr.Textbox(
value="You are a helpful assistant. You should think step-by-step. You should answer all questions by prioritizing the principle of openness",
label="System message"
),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title=f"{model_name}",
description=description,
chatbot=gr.Chatbot(scale=1, likeable=False, show_copy_button=True)
)
# Set interface description
description = """<p align="center">Viper-Coder-32B-Elite13-GGUF</p>"""
interface = create_interface(MODEL_REPO, description)
# Create Gradio Blocks app
demo = gr.Blocks()
with demo:
interface.render()
if __name__ == "__main__":
demo.launch(share=True) |