File size: 8,871 Bytes
2741d7d
 
4425d90
2741d7d
 
 
 
 
 
 
4425d90
2741d7d
eebf65b
2741d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebf65b
4425d90
2741d7d
 
 
 
 
 
4425d90
2741d7d
 
 
 
 
 
 
 
 
 
 
 
 
4425d90
2741d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218ebfb
2741d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0d2d
91d2c01
2741d7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import re
import uuid
import json
import time
import random
import asyncio
import cv2
from datetime import datetime, timedelta
from threading import Thread

import gradio as gr
import spaces
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from vllm import LLM
from vllm.sampling_params import SamplingParams

# -----------------------------------------------------------------------------
# Helper functions
# -----------------------------------------------------------------------------

def progress_bar_html(label: str) -> str:
    """Return an HTML snippet for a progress bar."""
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path: str, num_frames: int = 10):
    """
    Downsample a video to extract a set number of evenly spaced frames.
    Returns a list of tuples (PIL.Image, timestamp in seconds).
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames
    # Get evenly spaced frame indices.
    frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            # Convert BGR to RGB and then to a PIL Image.
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def load_system_prompt(repo_id: str, filename: str) -> str:
    """
    Load the system prompt from the given Hugging Face Hub repo file,
    and format it with the model name and current dates.
    """
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    today = datetime.today().strftime("%Y-%m-%d")
    yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
    model_name = repo_id.split("/")[-1]
    return system_prompt.format(name=model_name, today=today, yesterday=yesterday)

# -----------------------------------------------------------------------------
# Global Settings and Model Initialization
# -----------------------------------------------------------------------------

# Model details (adjust as needed)
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
# Load the system prompt from HF Hub (make sure SYSTEM_PROMPT.txt exists in the repo)
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
# If you prefer a hardcoded system prompt, you can use:
# SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, and ends with an ASCII cat."

# Initialize the Mistral LLM via vllm.
# Note: Running this model on GPU may require very high VRAM.
llm = LLM(model=MODEL_ID, tokenizer_mode="mistral")

# -----------------------------------------------------------------------------
# Main Generation Function
# -----------------------------------------------------------------------------
@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list,
    max_new_tokens: int = 512,
    temperature: float = 0.15,
    top_p: float = 0.9,
    top_k: int = 50,
):
    """
    The main generation function for the Mistral chatbot.
    It supports:
      - Text-only inference.
      - Image inference (attaches image file paths).
      - Video inference (extracts and attaches sampled video frames).
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    # Prepare the conversation with a system prompt.
    messages = [
        {"role": "system", "content": SYSTEM_PROMPT}
    ]
    
    # Check if any file is provided
    video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
    if files:
        # If any file is a video, use video inference branch.
        if any(str(f).lower().endswith(video_extensions) for f in files):
            # Remove any @video-infer tag if present.
            prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
            video_path = files[0]  # currently process the first video file
            frames = downsample_video(video_path)
            # Build a list that contains the prompt plus each frame information.
            user_content = [{"type": "text", "text": prompt_clean}]
            for frame in frames:
                image, timestamp = frame
                # Save the frame to a temporary file.
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                user_content.append({"type": "text", "text": f"Frame at {timestamp} seconds:"})
                user_content.append({"type": "image_path", "image_path": image_path})
            messages.append({"role": "user", "content": user_content})
        else:
            # Assume provided files are images.
            prompt_clean = re.sub(r"@mistral", "", text, flags=re.IGNORECASE).strip().strip('"')
            user_content = [{"type": "text", "text": prompt_clean}]
            for file in files:
                try:
                    image = Image.open(file)
                    image_path = f"image_{uuid.uuid4().hex}.png"
                    image.save(image_path)
                    user_content.append({"type": "image_path", "image_path": image_path})
                except Exception as e:
                    user_content.append({"type": "text", "text": f"Could not open file {file}"})
            messages.append({"role": "user", "content": user_content})
    else:
        # Text-only branch.
        messages.append({"role": "user", "content": [{"type": "text", "text": text}]})
    
    # Show a progress bar before generating.
    yield progress_bar_html("Processing with Mistral")
    
    # Set up sampling parameters.
    sampling_params = SamplingParams(
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k
    )
    # Run the chat (synchronously) using vllm.
    outputs = llm.chat(messages, sampling_params=sampling_params)
    final_response = outputs[0].outputs[0].text

    # Simulate streaming output by chunking the result.
    buffer = ""
    chunk_size = 20  # number of characters per chunk
    for i in range(0, len(final_response), chunk_size):
        buffer = final_response[: i + chunk_size]
        yield buffer
        time.sleep(0.05)
    return

# -----------------------------------------------------------------------------
# Gradio Interface Setup
# -----------------------------------------------------------------------------

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=1024, step=1, value=512),
        gr.Slider(label="Temperature", minimum=0.05, maximum=2.0, step=0.05, value=0.15),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
    ],
    examples=[
        # Example with text only.
        ["Explain the significance of today in the context of current events."],
        # Example with image files (ensure you have valid image paths).
        [{
            "text": "Describe what you see in the image.",
            "files": ["examples/3.jpg"]
        }],
        # Example with video file (ensure you have a valid video file).
        [{
            "text": "@video-infer Summarize the events shown in the video.",
            "files": ["examples/sample_video.mp4"]
        }],
    ],
    cache_examples=False,
    type="messages",
    description="# **Mistral Multimodal Chatbot** \nSupports text, image (by reference) and video inference. Use @video-infer in your query when providing a video.",
    fill_height=True,
    textbox=gr.MultimodalTextbox(
        label="Query Input",
        file_types=["image", "video"],
        file_count="multiple",
        placeholder="Enter your query here. Tag with @video-infer if using a video file."
    ),
    stop_btn="Stop Generation",
    examples_per_page=3,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)