Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,122 Bytes
b8a0d2d 8716c2f f022e05 8716c2f 67f9a49 8716c2f 20121ea 8716c2f 67f9a49 8716c2f f022e05 8716c2f 5373e26 8716c2f f022e05 8716c2f 652a69b 8716c2f f022e05 8716c2f f022e05 652a69b f022e05 652a69b f022e05 652a69b 8716c2f f022e05 8716c2f dec51b2 652a69b 8716c2f 652a69b 8716c2f 652a69b 8716c2f 652a69b f022e05 652a69b 8716c2f 652a69b 8716c2f 652a69b 8716c2f 652a69b f022e05 8716c2f 652a69b 8716c2f 652a69b 8716c2f 652a69b 8716c2f f022e05 8716c2f 652a69b 8716c2f 652a69b f022e05 652a69b 8716c2f b8a0d2d 652a69b f022e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import torch
import numpy as np
import cv2
import spaces
import time
import re
from PIL import Image
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
#####################################
# 1. Load Model & Processor
#####################################
MODEL_ID = "google/gemma-3-12b-it" # Adjust model ID as needed
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda")
model.eval()
#####################################
# 2. Helper Function: Get a Working Camera
#####################################
def get_working_camera():
"""
Tries camera indices 0, 1, and 2 until a working camera is found.
Returns the VideoCapture object or None if no camera can be opened.
"""
for i in range(3):
cap = cv2.VideoCapture(i)
if cap.isOpened():
return cap
return None
#####################################
# 3. Helper Function: Capture Live Frames
#####################################
def capture_live_frames(duration=5, num_frames=10):
"""
Captures live frames from a working webcam for a specified duration.
Returns a list of (PIL Image, timestamp) tuples.
"""
cap = get_working_camera()
if cap is None:
return [] # No working camera found
# Try to get FPS; default to 30 if not available.
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
fps = 30
total_frames_to_capture = int(duration * fps)
frame_indices = np.linspace(0, total_frames_to_capture - 1, num_frames, dtype=int)
captured_frames = []
frame_count = 0
start_time = time.time()
while frame_count < total_frames_to_capture:
ret, frame = cap.read()
if not ret:
break
if frame_count in frame_indices:
# Convert from BGR to RGB for PIL
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
timestamp = round(frame_count / fps, 2)
captured_frames.append((pil_image, timestamp))
frame_count += 1
if time.time() - start_time > duration:
break
cap.release()
return captured_frames
#####################################
# 4. Live Inference Function
#####################################
@spaces.GPU
def live_inference(duration=5):
"""
Captures live frames from the webcam, builds a prompt, and returns the generated text.
"""
frames = capture_live_frames(duration=duration, num_frames=10)
if not frames:
return "Could not capture live frames from the webcam."
# Build prompt using captured frames and timestamps.
messages = [{
"role": "user",
"content": [{"type": "text", "text": "Please describe what's happening in this live video."}]
}]
for (image, ts) in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
messages[0]["content"].append({"type": "image", "image": image})
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
frame_images = [img for (img, _) in frames]
inputs = processor(
text=[prompt],
images=frame_images,
return_tensors="pt",
padding=True
).to("cuda")
# Generate text output using a streaming approach.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
time.sleep(0.01)
return generated_text
#####################################
# 5. Build Gradio Live App
#####################################
def build_live_app():
with gr.Blocks() as demo:
gr.Markdown("# **Live Video Analysis**\n\nPress **Start** to capture a few seconds of live video from your webcam and analyze the content.")
with gr.Column():
duration_input = gr.Number(label="Capture Duration (seconds)", value=5, precision=0)
start_btn = gr.Button("Start")
output_text = gr.Textbox(label="Model Output")
restart_btn = gr.Button("Start Again", visible=False)
# Function to trigger live inference and reveal the restart button
def start_inference(duration):
text = live_inference(duration)
return text, gr.update(visible=True)
start_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
restart_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
return demo
if __name__ == "__main__":
app = build_live_app()
app.launch(debug=True, share=True) |