Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
67f9a49 verified
raw
history blame
6.19 kB
import gradio as gr
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import spaces
import time
import re
from PIL import Image
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
#####################################
# 1. Load Model & Processor
#####################################
MODEL_ID = "google/gemma-3-12b-it" # Example model ID (adjust to your needs)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda")
model.eval()
#####################################
# 2. Helper Function: Downsample Video
#####################################
def downsample_video(video_path, num_frames=10):
"""
Downsamples the video file to `num_frames` evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
#####################################
# 3. The Inference Function
#####################################
@spaces.GPU
def video_inference(video_file, duration):
"""
- Takes a recorded video file and a chosen duration (string).
- Downsamples the video, passes frames to the model for inference.
- Returns model-generated text + a bar chart based on the text.
"""
if video_file is None:
return "No video provided.", None
# 3.1: Downsample the recorded video
frames = downsample_video(video_file)
if not frames:
return "Could not read frames from video.", None
# 3.2: Construct prompt
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "Please describe what's happening in this video."}]
}
]
# Add frames (with timestamp) to the messages
for (image, ts) in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
messages[0]["content"].append({"type": "image", "image": image})
# Prepare final prompt
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Gather images for the model
frame_images = [img for (img, _) in frames]
inputs = processor(
text=[prompt],
images=frame_images,
return_tensors="pt",
padding=True
).to("cuda")
# 3.3: Generate text output (streaming)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
time.sleep(0.01)
# 3.4: Build a bar chart based on top keywords from the generated text
# (Naive approach: frequency of top 5 words)
words = re.findall(r'\w+', generated_text.lower())
freq = {}
for w in words:
freq[w] = freq.get(w, 0) + 1
# Sort words by frequency (descending)
sorted_items = sorted(freq.items(), key=lambda x: x[1], reverse=True)
# Pick top 5 words (if fewer than 5, pick all)
top5 = sorted_items[:5]
if not top5:
# If there's no text or no valid words, return no chart
return generated_text, None
categories = [item[0] for item in top5]
values = [item[1] for item in top5]
# Create the figure
fig, ax = plt.subplots()
colors = ["#4B0082", "#9370DB", "#8A2BE2", "#DA70D6", "#BA55D3"] # Purple-ish palette
# Make sure we have enough colors for the number of bars
color_list = colors[: len(categories)]
ax.bar(categories, values, color=color_list)
ax.set_title("Top Keywords in Generated Description")
ax.set_ylabel("Frequency")
ax.set_xlabel("Keyword")
# Return the final text and the figure
return generated_text, fig
#####################################
# 4. Build a Professional Gradio UI
#####################################
def build_app():
with gr.Blocks() as demo:
gr.Markdown("""
# **Gemma-3 (Example) Live Video Analysis**
Record a video (from webcam or file), then click **Stop**.
Next, click **Analyze** to run the model and see textual + chart outputs.
""")
with gr.Row():
with gr.Column():
duration = gr.Radio(
choices=["5", "10", "20", "30"],
value="5",
label="Suggested Recording Duration (seconds)",
info="Select how long you plan to record before pressing Stop."
)
# For older Gradio versions, avoid `source="webcam"`.
video = gr.Video(
label="Webcam Recording (press the Record button, then Stop)",
format="mp4"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Model Output")
output_plot = gr.Plot(label="Analytics Chart")
analyze_btn.click(
fn=video_inference,
inputs=[video, duration],
outputs=[output_text, output_plot]
)
return demo
if __name__ == "__main__":
app = build_app()
app.launch(debug=True)