Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
d9dde0d verified
raw
history blame
5.37 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import spaces
import subprocess
# Ensure pyav is installed
subprocess.run('pip install pyav', shell=True, check=True)
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from io import BytesIO
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16).to("cuda:0")
@spaces.GPU
def model_inference(
input_dict, history, max_tokens
):
text = input_dict["text"]
images = []
user_content = []
media_queue = []
if history == []:
text = input_dict["text"].strip()
for file in input_dict.get("files", []):
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
elif len(history) > 0:
resulting_messages = []
user_content = []
media_queue = []
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the images(s).")
print("resulting_messages", resulting_messages)
inputs = processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Generate
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
cache_examples=False,
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
type="messages"
)
demo.launch(debug=True, share=True)