Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
6ba3a4f verified
raw
history blame
7.95 kB
import os
import random
import uuid
import json
import time
import re
from threading import Thread
from datetime import datetime, timedelta
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import hf_hub_download
# -----------------------------------------------------------------------------
# Constants & Device Setup
# -----------------------------------------------------------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# -----------------------------------------------------------------------------
# Helper Functions
# -----------------------------------------------------------------------------
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def load_system_prompt(repo_id: str, filename: str) -> str:
"""
Download and load a system prompt template from the given Hugging Face repo.
The template may include placeholders (e.g. {name}, {today}, {yesterday}) that get formatted.
"""
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
def downsample_video(video_path: str):
"""
Extracts 10 evenly spaced frames from the video.
Returns a list of tuples (PIL.Image, timestamp_in_seconds).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames > 0 and fps > 0:
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def build_prompt(chat_history, current_input_text, video_frames=None, image_files=None):
"""
Build a conversation prompt string.
The system prompt is added first, then previous chat history, and finally the current input.
If video_frames or image_files are provided, a note is added in the prompt.
"""
prompt = f"System: {SYSTEM_PROMPT}\n"
# Append chat history (if any)
for msg in chat_history:
role = msg.get("role", "").capitalize()
content = msg.get("content", "")
prompt += f"{role}: {content}\n"
prompt += f"User: {current_input_text}\n"
if video_frames:
for _, timestamp in video_frames:
prompt += f"[Video Frame at {timestamp} sec]\n"
if image_files:
for _ in image_files:
prompt += "[Image Input]\n"
prompt += "Assistant: "
return prompt
# -----------------------------------------------------------------------------
# Load Mistral Model & System Prompt
# -----------------------------------------------------------------------------
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
).to(device)
model.eval()
# -----------------------------------------------------------------------------
# Main Generation Function
# -----------------------------------------------------------------------------
def generate(
input_dict: dict,
chat_history: list,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict.get("text", "")
files = input_dict.get("files", [])
# Separate video files from images based on file extension.
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
video_files = [f for f in files if str(f).lower().endswith(video_extensions)]
image_files = [f for f in files if not str(f).lower().endswith(video_extensions)]
video_frames = None
if video_files:
# Process the first video file.
video_path = video_files[0]
video_frames = downsample_video(video_path)
# Build the full prompt from the system prompt, chat history, current text, and file inputs.
prompt = build_prompt(chat_history, text, video_frames, image_files)
# Tokenize the prompt.
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Set up a streamer for incremental output.
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=20.0)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
}
# Launch generation in a separate thread.
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Mistral")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# -----------------------------------------------------------------------------
# Gradio Interface
# -----------------------------------------------------------------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[{"text": "Describe the content of the video.", "files": ["examples/sample_video.mp4"]}],
[{"text": "Explain what is in this image.", "files": ["examples/sample_image.jpg"]}],
["Tell me a fun fact about space."],
],
cache_examples=False,
type="messages",
description="# **Mistral Chatbot with Video Inference**\nA chatbot built with Mistral (via Transformers) that supports text, image, and video (frame extraction) inputs.",
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Type your message here. Optionally attach images or video."
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)