Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,349 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
from threading import Thread
|
8 |
-
import tempfile
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
import spaces
|
12 |
-
import torch
|
13 |
-
import numpy as np
|
14 |
-
from PIL import Image
|
15 |
-
import cv2
|
16 |
-
|
17 |
-
from transformers import (
|
18 |
-
Qwen2VLForConditionalGeneration,
|
19 |
-
AutoModelForImageTextToText,
|
20 |
-
AutoProcessor,
|
21 |
-
TextIteratorStreamer,
|
22 |
-
)
|
23 |
-
from transformers.image_utils import load_image
|
24 |
-
|
25 |
-
# Constants for text generation
|
26 |
-
MAX_MAX_NEW_TOKENS = 2048
|
27 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
28 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
29 |
-
|
30 |
-
# Determine device
|
31 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
-
|
33 |
-
# Load VIREX-062225-exp
|
34 |
-
MODEL_ID_M = "prithivMLmods/VIREX-062225-exp"
|
35 |
-
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
36 |
-
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
37 |
-
MODEL_ID_M,
|
38 |
-
trust_remote_code=True,
|
39 |
-
torch_dtype=torch.float16
|
40 |
-
).to(device).eval()
|
41 |
-
|
42 |
-
# Load DREX-062225-exp
|
43 |
-
MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
|
44 |
-
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
45 |
-
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
46 |
-
MODEL_ID_X,
|
47 |
-
trust_remote_code=True,
|
48 |
-
torch_dtype=torch.float16
|
49 |
-
).to(device).eval()
|
50 |
-
|
51 |
-
# Load Gemma3n-E4B-it (Placeholder: Adjust model class if incorrect)
|
52 |
-
MODEL_ID_G = "google/gemma-3n-E4B-it"
|
53 |
-
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
|
54 |
-
model_g = AutoModelForImageTextToText.from_pretrained(
|
55 |
-
MODEL_ID_G,
|
56 |
-
trust_remote_code=True,
|
57 |
-
torch_dtype=torch.float16
|
58 |
-
).to(device).eval()
|
59 |
-
|
60 |
-
# Load Gemma3n-E2B-it (Placeholder: Adjust model class if incorrect)
|
61 |
-
MODEL_ID_N = "google/gemma-3n-E2B-it"
|
62 |
-
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
|
63 |
-
model_n = AutoModelForImageTextToText.from_pretrained(
|
64 |
-
MODEL_ID_N,
|
65 |
-
trust_remote_code=True,
|
66 |
-
torch_dtype=torch.float16
|
67 |
-
).to(device).eval()
|
68 |
-
|
69 |
-
def downsample_video(video_path):
|
70 |
-
"""
|
71 |
-
Downsamples the video to evenly spaced frames and saves them to temporary files.
|
72 |
-
Returns a list of (frame_path, timestamp) and the temp directory.
|
73 |
-
"""
|
74 |
-
vidcap = cv2.VideoCapture(video_path)
|
75 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
77 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
78 |
-
temp_dir = tempfile.mkdtemp()
|
79 |
-
frames = []
|
80 |
-
for i in frame_indices:
|
81 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
82 |
-
success, image = vidcap.read()
|
83 |
-
if success:
|
84 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
85 |
-
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
86 |
-
Image.fromarray(image).save(frame_path)
|
87 |
-
timestamp = round(i / fps, 2)
|
88 |
-
frames.append((frame_path, timestamp))
|
89 |
-
vidcap.release()
|
90 |
-
return frames, temp_dir
|
91 |
-
|
92 |
-
@spaces.GPU
|
93 |
-
def generate_image(model_name: str, text: str, image_path: str,
|
94 |
-
max_new_tokens: int = 1024,
|
95 |
-
temperature: float = 0.6,
|
96 |
-
top_p: float = 0.9,
|
97 |
-
top_k: int = 50,
|
98 |
-
repetition_penalty: float = 1.2):
|
99 |
-
"""
|
100 |
-
Generates responses using the selected model for image input.
|
101 |
-
"""
|
102 |
-
if model_name == "VIREX-062225-7B-exp":
|
103 |
-
processor = processor_m
|
104 |
-
model = model_m
|
105 |
-
elif model_name == "DREX-062225-7B-exp":
|
106 |
-
processor = processor_x
|
107 |
-
model = model_x
|
108 |
-
elif model_name == "Gemma3n-E4B-it":
|
109 |
-
processor = processor_g
|
110 |
-
model = model_g
|
111 |
-
elif model_name == "Gemma3n-E2B-it":
|
112 |
-
processor = processor_n
|
113 |
-
model = model_n
|
114 |
-
else:
|
115 |
-
yield "Invalid model selected.", "Invalid model selected."
|
116 |
-
return
|
117 |
-
|
118 |
-
if image_path is None:
|
119 |
-
yield "Please upload an image.", "Please upload an image."
|
120 |
-
return
|
121 |
-
|
122 |
-
messages = [{"role": "user", "content": [{"type": "text", "text": text}, {"type": "image", "image": image_path}]}]
|
123 |
-
|
124 |
-
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
|
125 |
-
inputs = processor.apply_chat_template(
|
126 |
-
messages,
|
127 |
-
tokenize=True,
|
128 |
-
add_generation_prompt=True,
|
129 |
-
return_dict=True,
|
130 |
-
return_tensors="pt",
|
131 |
-
truncation=True, # Enable truncation to prevent overflow
|
132 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
133 |
-
).to(device)
|
134 |
-
else:
|
135 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
136 |
-
inputs = processor(
|
137 |
-
text=[prompt_full],
|
138 |
-
images=[image_path],
|
139 |
-
return_tensors="pt",
|
140 |
-
padding=True,
|
141 |
-
truncation=True, # Enable truncation to prevent overflow
|
142 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
143 |
-
).to(device)
|
144 |
-
|
145 |
-
# Check input token length
|
146 |
-
input_length = inputs["input_ids"].shape[1]
|
147 |
-
if input_length > MAX_INPUT_TOKEN_LENGTH:
|
148 |
-
yield f"Input too long. Max {MAX_INPUT_TOKEN_LENGTH} tokens. Got {input_length} tokens.", ""
|
149 |
-
return
|
150 |
-
|
151 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
152 |
-
generation_kwargs = {
|
153 |
-
**inputs,
|
154 |
-
"streamer": streamer,
|
155 |
-
"max_new_tokens": max_new_tokens,
|
156 |
-
"do_sample": True,
|
157 |
-
"temperature": temperature,
|
158 |
-
"top_p": top_p,
|
159 |
-
"top_k": top_k,
|
160 |
-
"repetition_penalty": repetition_penalty,
|
161 |
-
}
|
162 |
-
|
163 |
-
# Ensure all tensors are on the correct device
|
164 |
-
for key in generation_kwargs:
|
165 |
-
if isinstance(generation_kwargs[key], torch.Tensor):
|
166 |
-
generation_kwargs[key] = generation_kwargs[key].to(device)
|
167 |
-
|
168 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
169 |
-
thread.start()
|
170 |
-
buffer = ""
|
171 |
-
for new_text in streamer:
|
172 |
-
buffer += new_text
|
173 |
-
time.sleep(0.01)
|
174 |
-
yield buffer, buffer
|
175 |
-
|
176 |
-
@spaces.GPU
|
177 |
-
def generate_video(model_name: str, text: str, video_path: str,
|
178 |
-
max_new_tokens: int = 1024,
|
179 |
-
temperature: float = 0.6,
|
180 |
-
top_p: float = 0.9,
|
181 |
-
top_k: int = 50,
|
182 |
-
repetition_penalty: float = 1.2):
|
183 |
-
"""
|
184 |
-
Generates responses using the selected model for video input.
|
185 |
-
"""
|
186 |
-
if model_name == "VIREX-062225-7B-exp":
|
187 |
-
processor = processor_m
|
188 |
-
model = model_m
|
189 |
-
elif model_name == "DREX-062225-7B-exp":
|
190 |
-
processor = processor_x
|
191 |
-
model = model_x
|
192 |
-
elif model_name == "Gemma3n-E4B-it":
|
193 |
-
processor = processor_g
|
194 |
-
model = model_g
|
195 |
-
elif model_name == "Gemma3n-E2B-it":
|
196 |
-
processor = processor_n
|
197 |
-
model = model_n
|
198 |
-
else:
|
199 |
-
yield "Invalid model selected.", "Invalid model selected."
|
200 |
-
return
|
201 |
-
|
202 |
-
if video_path is None:
|
203 |
-
yield "Please upload a video.", "Please upload a video."
|
204 |
-
return
|
205 |
-
|
206 |
-
frames, temp_dir = downsample_video(video_path)
|
207 |
-
content = [{"type": "text", "text": text}]
|
208 |
-
for frame_path, timestamp in frames:
|
209 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
210 |
-
content.append({"type": "image", "image": frame_path})
|
211 |
-
messages = [{"role": "user", "content": content}]
|
212 |
-
|
213 |
-
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
|
214 |
-
inputs = processor.apply_chat_template(
|
215 |
-
messages,
|
216 |
-
tokenize=True,
|
217 |
-
add_generation_prompt=True,
|
218 |
-
return_dict=True,
|
219 |
-
return_tensors="pt",
|
220 |
-
truncation=True, # Enable truncation to prevent overflow
|
221 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
222 |
-
).to(device)
|
223 |
-
else:
|
224 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
225 |
-
images = [frame_path for frame_path, _ in frames]
|
226 |
-
inputs = processor(
|
227 |
-
text=[prompt_full],
|
228 |
-
images=images,
|
229 |
-
return_tensors="pt",
|
230 |
-
padding=True,
|
231 |
-
truncation=True, # Enable truncation to prevent overflow
|
232 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
233 |
-
).to(device)
|
234 |
-
|
235 |
-
# Check input token length
|
236 |
-
input_length = inputs["input_ids"].shape[1]
|
237 |
-
if input_length > MAX_INPUT_TOKEN_LENGTH:
|
238 |
-
yield f"Input too long. Max {MAX_INPUT_TOKEN_LENGTH} tokens. Got {input_length} tokens.", ""
|
239 |
-
return
|
240 |
-
|
241 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
242 |
-
generation_kwargs = {
|
243 |
-
**inputs,
|
244 |
-
"streamer": streamer,
|
245 |
-
"max_new_tokens": max_new_tokens,
|
246 |
-
"do_sample": True,
|
247 |
-
"temperature": temperature,
|
248 |
-
"top_p": top_p,
|
249 |
-
"top_k": top_k,
|
250 |
-
"repetition_penalty": repetition_penalty,
|
251 |
-
}
|
252 |
-
|
253 |
-
# Ensure all tensors are on the correct device
|
254 |
-
for key in generation_kwargs:
|
255 |
-
if isinstance(generation_kwargs[key], torch.Tensor):
|
256 |
-
generation_kwargs[key] = generation_kwargs[key].to(device)
|
257 |
-
|
258 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
259 |
-
thread.start()
|
260 |
-
buffer = ""
|
261 |
-
for new_text in streamer:
|
262 |
-
buffer += new_text
|
263 |
-
buffer = buffer.replace("<|im_end|>", "")
|
264 |
-
time.sleep(0.01)
|
265 |
-
yield buffer, buffer
|
266 |
-
|
267 |
-
# Define examples for image and video inference
|
268 |
-
image_examples = [
|
269 |
-
["Convert this page to doc [text] precisely.", "images/3.png"],
|
270 |
-
["Convert this page to doc [text] precisely.", "images/4.png"],
|
271 |
-
["Convert this page to doc [text] precisely.", "images/1.png"],
|
272 |
-
["Convert chart to OTSL.", "images/2.png"]
|
273 |
-
]
|
274 |
-
|
275 |
-
video_examples = [
|
276 |
-
["Explain the video in detail.", "videos/2.mp4"],
|
277 |
-
["Explain the ad in detail.", "videos/1.mp4"]
|
278 |
-
]
|
279 |
-
|
280 |
-
# Added CSS to style the output area as a "Canvas"
|
281 |
-
css = """
|
282 |
-
.submit-btn {
|
283 |
-
background-color: #2980b9 !important;
|
284 |
-
color: white !important;
|
285 |
-
}
|
286 |
-
.submit-btn:hover {
|
287 |
-
background-color: #3498db !important;
|
288 |
-
}
|
289 |
-
.canvas-output {
|
290 |
-
border: 2px solid #4682B4;
|
291 |
-
border-radius: 10px;
|
292 |
-
padding: 20px;
|
293 |
-
}
|
294 |
-
"""
|
295 |
-
|
296 |
-
# Create the Gradio Interface
|
297 |
-
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
298 |
-
gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
299 |
-
with gr.Row():
|
300 |
-
with gr.Column():
|
301 |
-
with gr.Tabs():
|
302 |
-
with gr.TabItem("Image Inference"):
|
303 |
-
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
304 |
-
image_upload = gr.Image(type="filepath", label="Image")
|
305 |
-
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
306 |
-
gr.Examples(
|
307 |
-
examples=image_examples,
|
308 |
-
inputs=[image_query, image_upload]
|
309 |
-
)
|
310 |
-
with gr.TabItem("Video Inference"):
|
311 |
-
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
312 |
-
video_upload = gr.Video(label="Video")
|
313 |
-
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
314 |
-
gr.Examples(
|
315 |
-
examples=video_examples,
|
316 |
-
inputs=[video_query, video_upload]
|
317 |
-
)
|
318 |
-
with gr.Accordion("Advanced options", open=False):
|
319 |
-
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
320 |
-
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
321 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
322 |
-
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
323 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
324 |
-
|
325 |
-
with gr.Column():
|
326 |
-
with gr.Column(elem_classes="canvas-output"):
|
327 |
-
gr.Markdown("## Result Canvas")
|
328 |
-
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
329 |
-
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
|
330 |
-
|
331 |
-
model_choice = gr.Radio(
|
332 |
-
choices=["DREX-062225-7B-exp", "VIREX-062225-7B-exp", "Gemma3n-E4B-it", "Gemma3n-E2B-it"],
|
333 |
-
label="Select Model",
|
334 |
-
value="DREX-062225-7B-exp"
|
335 |
-
)
|
336 |
-
|
337 |
-
image_submit.click(
|
338 |
-
fn=generate_image,
|
339 |
-
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
340 |
-
outputs=[output, markdown_output]
|
341 |
-
)
|
342 |
-
video_submit.click(
|
343 |
-
fn=generate_video,
|
344 |
-
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
345 |
-
outputs=[output, markdown_output]
|
346 |
-
)
|
347 |
-
|
348 |
-
if __name__ == "__main__":
|
349 |
-
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|