Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,12 @@ import json
|
|
5 |
import time
|
6 |
import asyncio
|
7 |
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
@@ -25,13 +31,9 @@ from transformers.image_utils import load_image
|
|
25 |
|
26 |
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
27 |
|
28 |
-
import re
|
29 |
-
import ast
|
30 |
-
import html
|
31 |
-
|
32 |
# Constants for text generation
|
33 |
-
MAX_MAX_NEW_TOKENS =
|
34 |
-
DEFAULT_MAX_NEW_TOKENS =
|
35 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
36 |
|
37 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
@@ -45,15 +47,6 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
45 |
torch_dtype=torch.float16
|
46 |
).to(device).eval()
|
47 |
|
48 |
-
# Load ByteDance's Dolphin
|
49 |
-
MODEL_ID_K = "ByteDance/Dolphin"
|
50 |
-
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
|
51 |
-
model_k = VisionEncoderDecoderModel.from_pretrained(
|
52 |
-
MODEL_ID_K,
|
53 |
-
trust_remote_code=True,
|
54 |
-
torch_dtype=torch.float16
|
55 |
-
).to(device).eval()
|
56 |
-
|
57 |
# Load SmolDocling-256M-preview
|
58 |
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
59 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
@@ -78,6 +71,21 @@ model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
78 |
torch_dtype=torch.float16
|
79 |
).to(device).eval()
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Preprocessing functions for SmolDocling-256M
|
82 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
83 |
"""Add random padding to an image based on its size."""
|
@@ -112,7 +120,12 @@ def downsample_video(video_path):
|
|
112 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
113 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
114 |
frames = []
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
for i in frame_indices:
|
117 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
118 |
success, image = vidcap.read()
|
@@ -124,103 +137,194 @@ def downsample_video(video_path):
|
|
124 |
vidcap.release()
|
125 |
return frames
|
126 |
|
127 |
-
# Dolphin
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
outputs = model.generate(
|
141 |
pixel_values=pixel_values,
|
142 |
-
decoder_input_ids=
|
143 |
-
decoder_attention_mask=
|
144 |
-
min_length=1,
|
145 |
max_length=4096,
|
146 |
-
pad_token_id=
|
147 |
-
eos_token_id=
|
148 |
use_cache=True,
|
149 |
-
bad_words_ids=[[
|
150 |
return_dict_in_generate=True,
|
151 |
-
do_sample=False,
|
152 |
-
num_beams=1,
|
153 |
-
repetition_penalty=1.1
|
154 |
)
|
155 |
-
sequence = processor.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
|
156 |
-
cleaned = sequence.replace(f"<s>{prompt} <Answer/>", "").replace("<pad>", "").replace("</s>", "").strip()
|
157 |
-
return cleaned
|
158 |
-
|
159 |
-
def process_elements(layout_results, image):
|
160 |
-
"""Parse layout results and extract elements from the image."""
|
161 |
-
# Placeholder parsing logic based on expected Dolphin output
|
162 |
-
# Assuming layout_results is a string like "[(x1,y1,x2,y2,label), ...]"
|
163 |
-
try:
|
164 |
-
elements = ast.literal_eval(layout_results)
|
165 |
-
except:
|
166 |
-
elements = [] # Fallback if parsing fails
|
167 |
|
168 |
-
|
169 |
-
reading_order = 0
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
@spaces.GPU
|
226 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
@@ -230,82 +334,62 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
230 |
top_k: int = 50,
|
231 |
repetition_penalty: float = 1.2):
|
232 |
"""Generate responses for image input using the selected model."""
|
|
|
|
|
|
|
|
|
|
|
233 |
if model_name == "ByteDance-s-Dolphin":
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
else:
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
else:
|
251 |
-
yield
|
252 |
-
return
|
253 |
|
254 |
-
if image is None:
|
255 |
-
yield "Please upload an image."
|
256 |
-
return
|
257 |
-
|
258 |
-
images = [image]
|
259 |
-
|
260 |
-
if model_name == "SmolDocling-256M-preview":
|
261 |
-
if "OTSL" in text or "code" in text:
|
262 |
-
images = [add_random_padding(img) for img in images]
|
263 |
-
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
264 |
-
text = normalize_values(text, target_max=500)
|
265 |
-
|
266 |
-
messages = [
|
267 |
-
{
|
268 |
-
"role": "user",
|
269 |
-
"content": [{"type": "image"} for _ in images] + [
|
270 |
-
{"type": "text", "text": text}
|
271 |
-
]
|
272 |
-
}
|
273 |
-
]
|
274 |
-
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
275 |
-
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
276 |
-
|
277 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
278 |
-
generation_kwargs = {
|
279 |
-
**inputs,
|
280 |
-
"streamer": streamer,
|
281 |
-
"max_new_tokens": max_new_tokens,
|
282 |
-
"temperature": temperature,
|
283 |
-
"top_p": top_p,
|
284 |
-
"top_k": top_k,
|
285 |
-
"repetition_penalty": repetition_penalty,
|
286 |
-
}
|
287 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
288 |
-
thread.start()
|
289 |
-
|
290 |
-
buffer = ""
|
291 |
-
full_output = ""
|
292 |
-
for new_text in streamer:
|
293 |
-
full_output += new_text
|
294 |
-
buffer += new_text.replace("<|im_end|>", "")
|
295 |
-
yield buffer
|
296 |
-
|
297 |
-
if model_name == "SmolDocling-256M-preview":
|
298 |
-
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
299 |
-
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
300 |
-
if "<chart>" in cleaned_output:
|
301 |
-
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
302 |
-
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
303 |
-
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
304 |
-
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
305 |
-
markdown_output = doc.export_to_markdown()
|
306 |
-
yield f"**MD Output:**\n\n{markdown_output}"
|
307 |
-
else:
|
308 |
-
yield cleaned_output
|
309 |
|
310 |
@spaces.GPU
|
311 |
def generate_video(model_name: str, text: str, video_path: str,
|
@@ -315,88 +399,76 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
315 |
top_k: int = 50,
|
316 |
repetition_penalty: float = 1.2):
|
317 |
"""Generate responses for video input using the selected model."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
if model_name == "ByteDance-s-Dolphin":
|
319 |
-
if
|
320 |
-
yield "Please
|
321 |
return
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
else:
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
else:
|
341 |
-
yield
|
342 |
-
return
|
343 |
-
|
344 |
-
if video_path is None:
|
345 |
-
yield "Please upload a video."
|
346 |
-
return
|
347 |
-
|
348 |
-
frames = downsample_video(video_path)
|
349 |
-
images = [frame for frame, _ in frames]
|
350 |
-
|
351 |
-
if model_name == "SmolDocling-256M-preview":
|
352 |
-
if "OTSL" in text or "code" in text:
|
353 |
-
images = [add_random_padding(img) for img in images]
|
354 |
-
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
355 |
-
text = normalize_values(text, target_max=500)
|
356 |
-
|
357 |
-
messages = [
|
358 |
-
{
|
359 |
-
"role": "user",
|
360 |
-
"content": [{"type": "image"} for _ in images] + [
|
361 |
-
{"type": "text", "text": text}
|
362 |
-
]
|
363 |
-
}
|
364 |
-
]
|
365 |
-
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
366 |
-
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
367 |
-
|
368 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
369 |
-
generation_kwargs = {
|
370 |
-
**inputs,
|
371 |
-
"streamer": streamer,
|
372 |
-
"max_new_tokens": max_new_tokens,
|
373 |
-
"temperature": temperature,
|
374 |
-
"top_p": top_p,
|
375 |
-
"top_k": top_k,
|
376 |
-
"repetition_penalty": repetition_penalty,
|
377 |
-
}
|
378 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
379 |
-
thread.start()
|
380 |
-
|
381 |
-
buffer = ""
|
382 |
-
full_output = ""
|
383 |
-
for new_text in streamer:
|
384 |
-
full_output += new_text
|
385 |
-
buffer += new_text.replace("<|im_end|>", "")
|
386 |
-
yield buffer
|
387 |
-
|
388 |
-
if model_name == "SmolDocling-256M-preview":
|
389 |
-
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
390 |
-
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
391 |
-
if "<chart>" in cleaned_output:
|
392 |
-
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
393 |
-
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
394 |
-
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
395 |
-
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
396 |
-
markdown_output = doc.export_to_markdown()
|
397 |
-
yield f"**MD Output:**\n\n{markdown_output}"
|
398 |
-
else:
|
399 |
-
yield cleaned_output
|
400 |
|
401 |
# Define examples for image and video inference
|
402 |
image_examples = [
|
@@ -423,11 +495,17 @@ css = """
|
|
423 |
# Create the Gradio Interface
|
424 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
425 |
gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
|
|
426 |
with gr.Row():
|
427 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
428 |
with gr.Tabs():
|
429 |
with gr.TabItem("Image Inference"):
|
430 |
-
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
431 |
image_upload = gr.Image(type="pil", label="Image")
|
432 |
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
433 |
gr.Examples(
|
@@ -442,20 +520,15 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
442 |
examples=video_examples,
|
443 |
inputs=[video_query, video_upload]
|
444 |
)
|
445 |
-
with gr.Accordion("Advanced options", open=False):
|
446 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
447 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
448 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
449 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
450 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
451 |
with gr.Column():
|
452 |
-
output = gr.
|
453 |
-
|
454 |
-
choices=["Nanonets-OCR-s", "SmolDocling-256M-preview", "MonkeyOCR-Recognition", "ByteDance-s-Dolphin"],
|
455 |
-
label="Select Model",
|
456 |
-
value="Nanonets-OCR-s"
|
457 |
-
)
|
458 |
-
|
459 |
image_submit.click(
|
460 |
fn=generate_image,
|
461 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
@@ -468,4 +541,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
468 |
)
|
469 |
|
470 |
if __name__ == "__main__":
|
471 |
-
demo.queue(max_size=30).launch(share=True
|
|
|
5 |
import time
|
6 |
import asyncio
|
7 |
from threading import Thread
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
import re
|
11 |
+
import ast
|
12 |
+
import html
|
13 |
+
from collections import namedtuple
|
14 |
|
15 |
import gradio as gr
|
16 |
import spaces
|
|
|
31 |
|
32 |
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Constants for text generation
|
35 |
+
MAX_MAX_NEW_TOKENS = 4096
|
36 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
37 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
47 |
torch_dtype=torch.float16
|
48 |
).to(device).eval()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Load SmolDocling-256M-preview
|
51 |
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
52 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
|
|
71 |
torch_dtype=torch.float16
|
72 |
).to(device).eval()
|
73 |
|
74 |
+
#------------------------------------------------#
|
75 |
+
# Load ByteDance's Dolphin (with specific implementation)
|
76 |
+
print("Loading ByteDance/Dolphin model...")
|
77 |
+
MODEL_ID_K = "ByteDance/Dolphin"
|
78 |
+
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K)
|
79 |
+
model_k = VisionEncoderDecoderModel.from_pretrained(MODEL_ID_K)
|
80 |
+
model_k.eval()
|
81 |
+
model_k.to(device)
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
model_k = model_k.half() # Use half-precision on GPU
|
84 |
+
tokenizer_k = processor_k.tokenizer
|
85 |
+
print("ByteDance/Dolphin model loaded.")
|
86 |
+
#------------------------------------------------#
|
87 |
+
|
88 |
+
|
89 |
# Preprocessing functions for SmolDocling-256M
|
90 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
91 |
"""Add random padding to an image based on its size."""
|
|
|
120 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
121 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
122 |
frames = []
|
123 |
+
# Take up to 10 frames
|
124 |
+
num_frames_to_sample = min(10, total_frames)
|
125 |
+
if num_frames_to_sample == 0:
|
126 |
+
return []
|
127 |
+
frame_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
|
128 |
+
|
129 |
for i in frame_indices:
|
130 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
131 |
success, image = vidcap.read()
|
|
|
137 |
vidcap.release()
|
138 |
return frames
|
139 |
|
140 |
+
# ------------------- Dolphin Model Specific Helper Functions ------------------- #
|
141 |
+
|
142 |
+
ImageDimensions = namedtuple("ImageDimensions", ["width", "height", "new_w", "new_h", "pad_w", "pad_h"])
|
143 |
+
|
144 |
+
class MarkdownConverter:
|
145 |
+
"""Converts structured recognition results to a Markdown string."""
|
146 |
+
def convert(self, elements):
|
147 |
+
markdown_str = ""
|
148 |
+
for elem in elements:
|
149 |
+
label = elem["label"]
|
150 |
+
text = elem["text"]
|
151 |
+
if label == "fig":
|
152 |
+
# Embed image as base64
|
153 |
+
markdown_str += f"\n\n"
|
154 |
+
elif label == "tab":
|
155 |
+
markdown_str += f"### Table\n\n{text}\n\n"
|
156 |
+
else: # text, title, head, foot, etc.
|
157 |
+
markdown_str += f"{text}\n\n"
|
158 |
+
return markdown_str.strip()
|
159 |
+
|
160 |
+
def prepare_image_dolphin(pil_image, target_size=1024):
|
161 |
+
"""Pads a PIL image to a square, returning a cv2 image and dimensions."""
|
162 |
+
image = np.array(pil_image.convert('RGB'))
|
163 |
+
h, w, _ = image.shape
|
164 |
+
if h > w:
|
165 |
+
new_h, new_w = target_size, int(w * target_size / h)
|
166 |
+
else:
|
167 |
+
new_h, new_w = int(h * target_size / w), target_size
|
168 |
+
|
169 |
+
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
170 |
+
|
171 |
+
pad_w = (target_size - new_w) // 2
|
172 |
+
pad_h = (target_size - new_h) // 2
|
173 |
+
|
174 |
+
padded_image = np.pad(resized_image, ((pad_h, pad_h), (pad_w, pad_w), (0, 0)), 'constant', constant_values=255)
|
175 |
+
dims = ImageDimensions(w, h, new_w, new_h, pad_w, pad_h)
|
176 |
+
|
177 |
+
return padded_image, dims
|
178 |
+
|
179 |
+
def parse_layout_string_dolphin(layout_string):
|
180 |
+
"""Parses the model's layout string into a list of (bbox, label) tuples."""
|
181 |
+
pattern = r'([a-zA-Z_]+)\(((?:\d+,){3}\d+)\)'
|
182 |
+
matches = re.findall(pattern, layout_string)
|
183 |
+
results = []
|
184 |
+
for label, coords_str in matches:
|
185 |
+
coords = tuple(map(int, coords_str.split(',')))
|
186 |
+
results.append((coords, label))
|
187 |
+
return results
|
188 |
+
|
189 |
+
def process_coordinates_dolphin(bbox, padded_image, dims, previous_box):
|
190 |
+
"""Converts relative bbox coordinates to absolute pixel coordinates for cropping."""
|
191 |
+
x1, y1, x2, y2 = bbox
|
192 |
+
|
193 |
+
orig_x1 = int(x1 / 1024 * dims.new_w)
|
194 |
+
orig_y1 = int(y1 / 1024 * dims.new_h)
|
195 |
+
orig_x2 = int(x2 / 1024 * dims.new_w)
|
196 |
+
orig_y2 = int(y2 / 1024 * dims.new_h)
|
197 |
+
|
198 |
+
x1 = orig_x1 + dims.pad_w
|
199 |
+
y1 = orig_y1 + dims.pad_h
|
200 |
+
x2 = orig_x2 + dims.pad_w
|
201 |
+
y2 = orig_y2 + dims.pad_h
|
202 |
+
|
203 |
+
return x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, bbox
|
204 |
+
|
205 |
+
@spaces.GPU
|
206 |
+
def dolphin_model_chat(model, processor, prompt, image):
|
207 |
+
"""Core inference function for the Dolphin model, supports batching."""
|
208 |
+
is_batch = isinstance(image, list)
|
209 |
+
|
210 |
+
images = image if is_batch else [image]
|
211 |
+
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
212 |
+
|
213 |
+
batch_inputs = processor(images, return_tensors="pt", padding=True)
|
214 |
+
pixel_values = batch_inputs.pixel_values.to(device)
|
215 |
+
if torch.cuda.is_available():
|
216 |
+
pixel_values = pixel_values.half()
|
217 |
+
|
218 |
+
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
219 |
+
prompt_inputs = tokenizer_k(prompts, add_special_tokens=False, return_tensors="pt")
|
220 |
+
prompt_ids = prompt_inputs.input_ids.to(device)
|
221 |
+
attention_mask = prompt_inputs.attention_mask.to(device)
|
222 |
+
|
223 |
outputs = model.generate(
|
224 |
pixel_values=pixel_values,
|
225 |
+
decoder_input_ids=prompt_ids,
|
226 |
+
decoder_attention_mask=attention_mask,
|
|
|
227 |
max_length=4096,
|
228 |
+
pad_token_id=tokenizer_k.pad_token_id,
|
229 |
+
eos_token_id=tokenizer_k.eos_token_id,
|
230 |
use_cache=True,
|
231 |
+
bad_words_ids=[[tokenizer_k.unk_token_id]],
|
232 |
return_dict_in_generate=True,
|
|
|
|
|
|
|
233 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
sequences = tokenizer_k.batch_decode(outputs.sequences, skip_special_tokens=False)
|
|
|
236 |
|
237 |
+
results = []
|
238 |
+
for i, seq in enumerate(sequences):
|
239 |
+
cleaned = seq.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
240 |
+
results.append(cleaned)
|
241 |
+
|
242 |
+
return results[0] if not is_batch else results
|
243 |
+
|
244 |
+
@spaces.GPU
|
245 |
+
def process_element_batch_dolphin(elements, prompt, model, processor, max_batch_size=16):
|
246 |
+
"""Processes a batch of cropped image elements with the same prompt."""
|
247 |
+
results = []
|
248 |
+
for i in range(0, len(elements), max_batch_size):
|
249 |
+
batch_elements = elements[i:i+max_batch_size]
|
250 |
+
crops_list = [elem["crop"] for elem in batch_elements]
|
251 |
+
prompts_list = [prompt] * len(crops_list)
|
252 |
+
|
253 |
+
batch_results = dolphin_model_chat(model, processor, prompts_list, crops_list)
|
254 |
+
|
255 |
+
for j, result in enumerate(batch_results):
|
256 |
+
elem = batch_elements[j]
|
257 |
+
results.append({
|
258 |
+
"label": elem["label"],
|
259 |
+
"bbox": elem["bbox"],
|
260 |
+
"text": result.strip(),
|
261 |
+
"reading_order": elem["reading_order"],
|
262 |
+
})
|
263 |
+
return results
|
264 |
+
|
265 |
+
@spaces.GPU
|
266 |
+
def run_dolphin_image_pipeline(pil_image, model, processor):
|
267 |
+
"""Runs the full two-stage pipeline for a single image."""
|
268 |
+
try:
|
269 |
+
# Stage 1: Layout Analysis
|
270 |
+
print("Dolphin: Running layout analysis...")
|
271 |
+
layout_output = dolphin_model_chat(model, processor, "Parse the reading order of this document.", pil_image)
|
272 |
+
|
273 |
+
# Stage 2: Element Recognition
|
274 |
+
print("Dolphin: Parsing layout and processing elements...")
|
275 |
+
padded_image, dims = prepare_image_dolphin(pil_image)
|
276 |
+
layout_results = parse_layout_string_dolphin(layout_output)
|
277 |
+
|
278 |
+
text_elements, table_elements, figure_results = [], [], []
|
279 |
+
previous_box = None
|
280 |
+
reading_order = 0
|
281 |
+
|
282 |
+
for bbox, label in layout_results:
|
283 |
+
try:
|
284 |
+
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates_dolphin(
|
285 |
+
bbox, padded_image, dims, previous_box
|
286 |
+
)
|
287 |
+
cropped = padded_image[y1:y2, x1:x2]
|
288 |
+
|
289 |
+
if cropped.size > 0:
|
290 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
291 |
+
element_info = {"crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order}
|
292 |
+
|
293 |
+
if label == "fig":
|
294 |
+
buffered = io.BytesIO()
|
295 |
+
pil_crop.save(buffered, format="PNG")
|
296 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
297 |
+
figure_results.append({"label": label, "bbox": element_info["bbox"], "text": img_base64, "reading_order": reading_order})
|
298 |
+
elif label == "tab":
|
299 |
+
table_elements.append(element_info)
|
300 |
+
else:
|
301 |
+
text_elements.append(element_info)
|
302 |
+
reading_order += 1
|
303 |
+
except Exception as e:
|
304 |
+
print(f"Dolphin: Error processing element with label {label}: {e}")
|
305 |
+
continue
|
306 |
+
|
307 |
+
recognition_results = figure_results.copy()
|
308 |
+
if text_elements:
|
309 |
+
print(f"Dolphin: Recognizing {len(text_elements)} text element(s)...")
|
310 |
+
recognition_results.extend(process_element_batch_dolphin(text_elements, "Read text in the image.", model, processor))
|
311 |
+
if table_elements:
|
312 |
+
print(f"Dolphin: Parsing {len(table_elements)} table(s)...")
|
313 |
+
recognition_results.extend(process_element_batch_dolphin(table_elements, "Parse the table in the image.", model, processor))
|
314 |
+
|
315 |
+
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
316 |
+
|
317 |
+
# Stage 3: Generate Markdown
|
318 |
+
print("Dolphin: Generating final Markdown output...")
|
319 |
+
converter = MarkdownConverter()
|
320 |
+
markdown_output = converter.convert(recognition_results)
|
321 |
+
return f"**Markdown Output (from Dolphin):**\n\n{markdown_output}"
|
322 |
+
except Exception as e:
|
323 |
+
print(f"Error during Dolphin pipeline: {e}")
|
324 |
+
return f"An error occurred during the Dolphin processing pipeline: {e}"
|
325 |
+
|
326 |
+
# ------------------- End of Dolphin Specific Functions ------------------- #
|
327 |
+
|
328 |
|
329 |
@spaces.GPU
|
330 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
|
|
334 |
top_k: int = 50,
|
335 |
repetition_penalty: float = 1.2):
|
336 |
"""Generate responses for image input using the selected model."""
|
337 |
+
if image is None:
|
338 |
+
yield "Please upload an image."
|
339 |
+
return
|
340 |
+
|
341 |
+
# --- Dolphin Specific Path (Non-streaming, multi-stage) ---
|
342 |
if model_name == "ByteDance-s-Dolphin":
|
343 |
+
yield run_dolphin_image_pipeline(image, model_k, processor_k)
|
344 |
+
return
|
345 |
+
|
346 |
+
# --- Generic Path for Other Models (Streaming) ---
|
347 |
+
if model_name == "Nanonets-OCR-s":
|
348 |
+
processor, model = processor_m, model_m
|
349 |
+
elif model_name == "MonkeyOCR-Recognition":
|
350 |
+
processor, model = processor_g, model_g
|
351 |
+
elif model_name == "SmolDocling-256M-preview":
|
352 |
+
processor, model = processor_x, model_x
|
353 |
else:
|
354 |
+
yield "Invalid model selected."
|
355 |
+
return
|
356 |
+
|
357 |
+
images = [image]
|
358 |
+
if model_name == "SmolDocling-256M-preview":
|
359 |
+
if "OTSL" in text or "code" in text:
|
360 |
+
images = [add_random_padding(img) for img in images]
|
361 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
362 |
+
text = normalize_values(text, target_max=500)
|
363 |
+
|
364 |
+
messages = [{"role": "user", "content": [{"type": "image"}] * len(images) + [{"type": "text", "text": text}]}]
|
365 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
366 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
367 |
+
|
368 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
369 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
|
370 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
371 |
+
thread.start()
|
372 |
+
|
373 |
+
buffer = ""
|
374 |
+
full_output = ""
|
375 |
+
for new_text in streamer:
|
376 |
+
full_output += new_text
|
377 |
+
buffer += new_text.replace("<|im_end|>", "")
|
378 |
+
yield buffer
|
379 |
+
|
380 |
+
if model_name == "SmolDocling-256M-preview":
|
381 |
+
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
382 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
383 |
+
if "<chart>" in cleaned_output:
|
384 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
385 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
386 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
387 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
388 |
+
markdown_output = doc.export_to_markdown()
|
389 |
+
yield f"**MD Output:**\n\n{markdown_output}"
|
390 |
else:
|
391 |
+
yield cleaned_output
|
|
|
392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
@spaces.GPU
|
395 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
|
399 |
top_k: int = 50,
|
400 |
repetition_penalty: float = 1.2):
|
401 |
"""Generate responses for video input using the selected model."""
|
402 |
+
if video_path is None:
|
403 |
+
yield "Please upload a video."
|
404 |
+
return
|
405 |
+
|
406 |
+
frames_with_ts = downsample_video(video_path)
|
407 |
+
if not frames_with_ts:
|
408 |
+
yield "Could not extract frames from the video."
|
409 |
+
return
|
410 |
+
images = [frame for frame, _ in frames_with_ts]
|
411 |
+
timestamps = [ts for _, ts in frames_with_ts]
|
412 |
+
|
413 |
+
# --- Dolphin Specific Path (Batch processing frames) ---
|
414 |
if model_name == "ByteDance-s-Dolphin":
|
415 |
+
if not text:
|
416 |
+
yield "Please provide a query for the video analysis (e.g., 'Describe what you see')."
|
417 |
return
|
418 |
+
prompts = [text] * len(images)
|
419 |
+
yield "Analyzing video frames with Dolphin... (this may take a moment)"
|
420 |
+
results = dolphin_model_chat(model_k, processor_k, prompts, images)
|
421 |
+
full_output = "### Dolphin Video Analysis (per-frame)\n\n"
|
422 |
+
for i, res in enumerate(results):
|
423 |
+
full_output += f"**Frame at {timestamps[i]:.2f}s:**\n{res.strip()}\n\n---\n"
|
424 |
+
yield full_output
|
425 |
+
return
|
426 |
+
|
427 |
+
# --- Generic Path for Other Models (Streaming) ---
|
428 |
+
if model_name == "Nanonets-OCR-s":
|
429 |
+
processor, model = processor_m, model_m
|
430 |
+
elif model_name == "MonkeyOCR-Recognition":
|
431 |
+
processor, model = processor_g, model_g
|
432 |
+
elif model_name == "SmolDocling-256M-preview":
|
433 |
+
processor, model = processor_x, model_x
|
434 |
else:
|
435 |
+
yield "Invalid model selected."
|
436 |
+
return
|
437 |
+
|
438 |
+
if model_name == "SmolDocling-256M-preview":
|
439 |
+
if "OTSL" in text or "code" in text:
|
440 |
+
images = [add_random_padding(img) for img in images]
|
441 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
442 |
+
text = normalize_values(text, target_max=500)
|
443 |
+
|
444 |
+
messages = [{"role": "user", "content": [{"type": "image"}] * len(images) + [{"type": "text", "text": text}]}]
|
445 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
446 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
447 |
+
|
448 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
449 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
|
450 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
451 |
+
thread.start()
|
452 |
+
|
453 |
+
buffer = ""
|
454 |
+
full_output = ""
|
455 |
+
for new_text in streamer:
|
456 |
+
full_output += new_text
|
457 |
+
buffer += new_text.replace("<|im_end|>", "")
|
458 |
+
yield buffer
|
459 |
+
|
460 |
+
if model_name == "SmolDocling-256M-preview":
|
461 |
+
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
462 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
463 |
+
if "<chart>" in cleaned_output:
|
464 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
465 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
466 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
467 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
468 |
+
markdown_output = doc.export_to_markdown()
|
469 |
+
yield f"**MD Output:**\n\n{markdown_output}"
|
470 |
else:
|
471 |
+
yield cleaned_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
|
473 |
# Define examples for image and video inference
|
474 |
image_examples = [
|
|
|
495 |
# Create the Gradio Interface
|
496 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
497 |
gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
498 |
+
gr.Markdown("A multi-model OCR and Document AI interface. Select 'ByteDance-s-Dolphin' for advanced, two-stage document layout analysis on images.")
|
499 |
with gr.Row():
|
500 |
with gr.Column():
|
501 |
+
model_choice = gr.Radio(
|
502 |
+
choices=["Nanonets-OCR-s", "SmolDocling-256M-preview", "MonkeyOCR-Recognition", "ByteDance-s-Dolphin"],
|
503 |
+
label="Select Model",
|
504 |
+
value="Nanonets-OCR-s"
|
505 |
+
)
|
506 |
with gr.Tabs():
|
507 |
with gr.TabItem("Image Inference"):
|
508 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here... For Dolphin, leave blank to run full document analysis or ask a question about the image.")
|
509 |
image_upload = gr.Image(type="pil", label="Image")
|
510 |
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
511 |
gr.Examples(
|
|
|
520 |
examples=video_examples,
|
521 |
inputs=[video_query, video_upload]
|
522 |
)
|
523 |
+
with gr.Accordion("Advanced options (for streaming models)", open=False):
|
524 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
525 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
526 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
527 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
528 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
529 |
with gr.Column():
|
530 |
+
output = gr.Markdown(label="Output", interactive=False)
|
531 |
+
|
|
|
|
|
|
|
|
|
|
|
532 |
image_submit.click(
|
533 |
fn=generate_image,
|
534 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
|
541 |
)
|
542 |
|
543 |
if __name__ == "__main__":
|
544 |
+
demo.queue(max_size=30).launch(share=True)
|