Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import json
|
|
5 |
import time
|
6 |
import asyncio
|
7 |
from threading import Thread
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
@@ -47,16 +48,6 @@ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
47 |
torch_dtype=torch.float16
|
48 |
).to(device).eval()
|
49 |
|
50 |
-
# Load typhoon-ocr-3b
|
51 |
-
MODEL_ID_T = "scb10x/typhoon-ocr-3b"
|
52 |
-
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
53 |
-
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
54 |
-
MODEL_ID_T,
|
55 |
-
trust_remote_code=True,
|
56 |
-
torch_dtype=torch.float16
|
57 |
-
).to(device).eval()
|
58 |
-
|
59 |
-
|
60 |
# Load Gemma3n-E4B-it
|
61 |
MODEL_ID_G = "google/gemma-3n-E4B-it"
|
62 |
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
|
@@ -66,29 +57,40 @@ model_g = AutoModelForImageTextToText.from_pretrained(
|
|
66 |
torch_dtype=torch.float16
|
67 |
).to(device).eval()
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def downsample_video(video_path):
|
70 |
"""
|
71 |
-
Downsamples the video to evenly spaced frames.
|
72 |
-
|
73 |
"""
|
74 |
vidcap = cv2.VideoCapture(video_path)
|
75 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
77 |
-
frames = []
|
78 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
|
|
|
|
79 |
for i in frame_indices:
|
80 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
81 |
success, image = vidcap.read()
|
82 |
if success:
|
83 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
84 |
-
|
|
|
85 |
timestamp = round(i / fps, 2)
|
86 |
-
frames.append((
|
87 |
vidcap.release()
|
88 |
-
return frames
|
89 |
|
90 |
@spaces.GPU
|
91 |
-
def generate_image(model_name: str, text: str,
|
92 |
max_new_tokens: int = 1024,
|
93 |
temperature: float = 0.6,
|
94 |
top_p: float = 0.9,
|
@@ -103,30 +105,43 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
103 |
elif model_name == "DREX-062225-7B-exp":
|
104 |
processor = processor_x
|
105 |
model = model_x
|
106 |
-
elif model_name == "Typhoon-OCR-3B":
|
107 |
-
processor = processor_t
|
108 |
-
model = model_t
|
109 |
elif model_name == "Gemma3n-E4B-it":
|
110 |
processor = processor_g
|
111 |
model = model_g
|
|
|
|
|
|
|
112 |
else:
|
113 |
yield "Invalid model selected.", "Invalid model selected."
|
114 |
return
|
115 |
|
116 |
-
if
|
117 |
yield "Please upload an image.", "Please upload an image."
|
118 |
return
|
119 |
|
120 |
-
messages = [{"role": "user", "content": [{"type": "
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
131 |
generation_kwargs = {
|
132 |
**inputs,
|
@@ -162,12 +177,12 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
162 |
elif model_name == "DREX-062225-7B-exp":
|
163 |
processor = processor_x
|
164 |
model = model_x
|
165 |
-
elif model_name == "Typhoon-OCR-3B":
|
166 |
-
processor = processor_t
|
167 |
-
model = model_t
|
168 |
elif model_name == "Gemma3n-E4B-it":
|
169 |
processor = processor_g
|
170 |
model = model_g
|
|
|
|
|
|
|
171 |
else:
|
172 |
yield "Invalid model selected.", "Invalid model selected."
|
173 |
return
|
@@ -176,26 +191,35 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
176 |
yield "Please upload a video.", "Please upload a video."
|
177 |
return
|
178 |
|
179 |
-
frames = downsample_video(video_path)
|
180 |
content = [{"type": "text", "text": text}]
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
else:
|
185 |
-
for frame in frames:
|
186 |
-
image, timestamp = frame
|
187 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
188 |
-
content.append({"type": "image", "image": image})
|
189 |
messages = [{"role": "user", "content": content}]
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
200 |
generation_kwargs = {
|
201 |
**inputs,
|
@@ -253,7 +277,7 @@ with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
|
253 |
with gr.Tabs():
|
254 |
with gr.TabItem("Image Inference"):
|
255 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
256 |
-
image_upload = gr.Image(type="
|
257 |
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
258 |
gr.Examples(
|
259 |
examples=image_examples,
|
@@ -281,18 +305,11 @@ with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
|
281 |
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
|
282 |
|
283 |
model_choice = gr.Radio(
|
284 |
-
choices=["DREX-062225-7B-exp", "VIREX-062225-7B-exp", "
|
285 |
label="Select Model",
|
286 |
value="DREX-062225-7B-exp"
|
287 |
)
|
288 |
|
289 |
-
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs/discussions)")
|
290 |
-
gr.Markdown("> [DREX-062225-7B-exp](https://huggingface.co/prithivMLmods/DREX-062225-exp): the drex-062225-exp (document retrieval and extraction expert) model is a specialized fine-tuned version of docscopeocr-7b-050425-exp, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture.")
|
291 |
-
gr.Markdown("> [VIREX-062225-7B-exp](https://huggingface.co/prithivMLmods/VIREX-062225-exp): the virex-062225-exp (video information retrieval and extraction expert - experimental) model is a fine-tuned version of qwen2.5-vl-7b-instruct, specifically optimized for advanced video understanding, image comprehension, sense of reasoning, and natural language decision-making through cot reasoning.")
|
292 |
-
gr.Markdown("> [Typhoon-OCR-3B](https://huggingface.co/scb10x/typhoon-ocr-3b): a bilingual document parsing model built specifically for real-world documents in thai and english, inspired by models like olmocr, based on qwen2.5-vl-instruction. this model is intended to be used with a specific prompt only.")
|
293 |
-
gr.Markdown("> [Gemma3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it): A multimodal model capable of processing images and videos for various tasks.")
|
294 |
-
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
295 |
-
|
296 |
image_submit.click(
|
297 |
fn=generate_image,
|
298 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
|
5 |
import time
|
6 |
import asyncio
|
7 |
from threading import Thread
|
8 |
+
import tempfile
|
9 |
|
10 |
import gradio as gr
|
11 |
import spaces
|
|
|
48 |
torch_dtype=torch.float16
|
49 |
).to(device).eval()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Load Gemma3n-E4B-it
|
52 |
MODEL_ID_G = "google/gemma-3n-E4B-it"
|
53 |
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
|
|
|
57 |
torch_dtype=torch.float16
|
58 |
).to(device).eval()
|
59 |
|
60 |
+
# Load Gemma3n-E2B-it
|
61 |
+
MODEL_ID_N = "google/gemma-3n-E2B-it"
|
62 |
+
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
|
63 |
+
model_n = AutoModelForImageTextToText.from_pretrained(
|
64 |
+
MODEL_ID_N,
|
65 |
+
trust_remote_code=True,
|
66 |
+
torch_dtype=torch.float16
|
67 |
+
).to(device).eval()
|
68 |
+
|
69 |
def downsample_video(video_path):
|
70 |
"""
|
71 |
+
Downsamples the video to evenly spaced frames and saves them to temporary files.
|
72 |
+
Returns a list of (frame_path, timestamp) and the temp directory.
|
73 |
"""
|
74 |
vidcap = cv2.VideoCapture(video_path)
|
75 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
77 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
78 |
+
temp_dir = tempfile.mkdtemp()
|
79 |
+
frames = []
|
80 |
for i in frame_indices:
|
81 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
82 |
success, image = vidcap.read()
|
83 |
if success:
|
84 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
85 |
+
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
|
86 |
+
Image.fromarray(image).save(frame_path)
|
87 |
timestamp = round(i / fps, 2)
|
88 |
+
frames.append((frame_path, timestamp))
|
89 |
vidcap.release()
|
90 |
+
return frames, temp_dir
|
91 |
|
92 |
@spaces.GPU
|
93 |
+
def generate_image(model_name: str, text: str, image_path: str,
|
94 |
max_new_tokens: int = 1024,
|
95 |
temperature: float = 0.6,
|
96 |
top_p: float = 0.9,
|
|
|
105 |
elif model_name == "DREX-062225-7B-exp":
|
106 |
processor = processor_x
|
107 |
model = model_x
|
|
|
|
|
|
|
108 |
elif model_name == "Gemma3n-E4B-it":
|
109 |
processor = processor_g
|
110 |
model = model_g
|
111 |
+
elif model_name == "Gemma3n-E2B-it":
|
112 |
+
processor = processor_n
|
113 |
+
model = model_n
|
114 |
else:
|
115 |
yield "Invalid model selected.", "Invalid model selected."
|
116 |
return
|
117 |
|
118 |
+
if image_path is None:
|
119 |
yield "Please upload an image.", "Please upload an image."
|
120 |
return
|
121 |
|
122 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": text}, {"type": "image", "image": image_path}]}]
|
123 |
+
|
124 |
+
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
|
125 |
+
inputs = processor.apply_chat_template(
|
126 |
+
messages,
|
127 |
+
tokenize=True,
|
128 |
+
add_generation_prompt=True,
|
129 |
+
return_dict=True,
|
130 |
+
return_tensors="pt",
|
131 |
+
truncation=False,
|
132 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
133 |
+
).to(device)
|
134 |
+
else:
|
135 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
136 |
+
inputs = processor(
|
137 |
+
text=[prompt_full],
|
138 |
+
images=[image_path],
|
139 |
+
return_tensors="pt",
|
140 |
+
padding=True,
|
141 |
+
truncation=False,
|
142 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
143 |
+
).to(device)
|
144 |
+
|
145 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
146 |
generation_kwargs = {
|
147 |
**inputs,
|
|
|
177 |
elif model_name == "DREX-062225-7B-exp":
|
178 |
processor = processor_x
|
179 |
model = model_x
|
|
|
|
|
|
|
180 |
elif model_name == "Gemma3n-E4B-it":
|
181 |
processor = processor_g
|
182 |
model = model_g
|
183 |
+
elif model_name == "Gemma3n-E2B-it":
|
184 |
+
processor = processor_n
|
185 |
+
model = model_n
|
186 |
else:
|
187 |
yield "Invalid model selected.", "Invalid model selected."
|
188 |
return
|
|
|
191 |
yield "Please upload a video.", "Please upload a video."
|
192 |
return
|
193 |
|
194 |
+
frames, temp_dir = downsample_video(video_path)
|
195 |
content = [{"type": "text", "text": text}]
|
196 |
+
for frame_path, timestamp in frames:
|
197 |
+
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
198 |
+
content.append({"type": "image", "image": frame_path})
|
|
|
|
|
|
|
|
|
|
|
199 |
messages = [{"role": "user", "content": content}]
|
200 |
+
|
201 |
+
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
|
202 |
+
inputs = processor.apply_chat_template(
|
203 |
+
messages,
|
204 |
+
tokenize=True,
|
205 |
+
add_generation_prompt=True,
|
206 |
+
return_dict=True,
|
207 |
+
return_tensors="pt",
|
208 |
+
truncation=False,
|
209 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
210 |
+
).to(device)
|
211 |
+
else:
|
212 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
213 |
+
images = [frame_path for frame_path, _ in frames]
|
214 |
+
inputs = processor(
|
215 |
+
text=[prompt_full],
|
216 |
+
images=images,
|
217 |
+
return_tensors="pt",
|
218 |
+
padding=True,
|
219 |
+
truncation=False,
|
220 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
221 |
+
).to(device)
|
222 |
+
|
223 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
224 |
generation_kwargs = {
|
225 |
**inputs,
|
|
|
277 |
with gr.Tabs():
|
278 |
with gr.TabItem("Image Inference"):
|
279 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
280 |
+
image_upload = gr.Image(type="filepath", label="Image")
|
281 |
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
282 |
gr.Examples(
|
283 |
examples=image_examples,
|
|
|
305 |
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
|
306 |
|
307 |
model_choice = gr.Radio(
|
308 |
+
choices=["DREX-062225-7B-exp", "VIREX-062225-7B-exp", "Gemma3n-E4B-it", "Gemma3n-E2B-it"],
|
309 |
label="Select Model",
|
310 |
value="DREX-062225-7B-exp"
|
311 |
)
|
312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
image_submit.click(
|
314 |
fn=generate_image,
|
315 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|