prithivMLmods commited on
Commit
d7aba51
·
verified ·
1 Parent(s): 9f8571a

Delete clip_art.py

Browse files
Files changed (1) hide show
  1. clip_art.py +0 -74
clip_art.py DELETED
@@ -1,74 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import AutoImageProcessor, SiglipForImageClassification
4
- from transformers.image_utils import load_image
5
- from PIL import Image
6
- import torch
7
-
8
- # Load model and processor
9
- model_name = "prithivMLmods/Clipart-126-DomainNet"
10
- model = SiglipForImageClassification.from_pretrained(model_name)
11
- processor = AutoImageProcessor.from_pretrained(model_name)
12
-
13
- @spaces.GPU
14
- def clipart_classification(image):
15
- """Predicts the clipart category for an input image."""
16
- # Convert the input numpy array to a PIL Image and ensure it's in RGB format
17
- image = Image.fromarray(image).convert("RGB")
18
-
19
- # Process the image and prepare it for the model
20
- inputs = processor(images=image, return_tensors="pt")
21
-
22
- # Perform inference without gradient computation
23
- with torch.no_grad():
24
- outputs = model(**inputs)
25
- logits = outputs.logits
26
- # Apply softmax to obtain probabilities for each class
27
- probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
28
-
29
- # Mapping from indices to clipart category labels
30
- labels = {
31
- "0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus",
32
- "5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear",
33
- "10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap",
34
- "15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake",
35
- "20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon",
36
- "25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan",
37
- "30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup",
38
- "35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile",
39
- "40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums",
40
- "45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather",
41
- "50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot",
42
- "55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes",
43
- "60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse",
44
- "65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion",
45
- "70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito",
46
- "75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda",
47
- "80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin",
48
- "85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet",
49
- "90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle",
50
- "95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep",
51
- "100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider",
52
- "105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean",
53
- "109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear",
54
- "114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China",
55
- "117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella",
56
- "122": "vase", "123": "watermelon", "124": "whale", "125": "zebra"
57
- }
58
-
59
- # Create a dictionary mapping each label to its corresponding probability (rounded)
60
- predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
61
- return predictions
62
-
63
- # Create Gradio interface
64
- iface = gr.Interface(
65
- fn=clipart_classification,
66
- inputs=gr.Image(type="numpy"),
67
- outputs=gr.Label(label="Prediction Scores"),
68
- title="Clipart-126-DomainNet Classification",
69
- description="Upload a clipart image to classify it into one of 126 domain categories."
70
- )
71
-
72
- # Launch the app
73
- if __name__ == "__main__":
74
- iface.launch()