Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,19 +10,24 @@ import gradio as gr
|
|
10 |
import spaces
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
-
from PIL import Image
|
14 |
import cv2
|
15 |
-
import edge_tts
|
16 |
|
17 |
from transformers import (
|
18 |
-
AutoModelForCausalLM,
|
19 |
-
AutoTokenizer,
|
20 |
-
TextIteratorStreamer,
|
21 |
Qwen2VLForConditionalGeneration,
|
|
|
|
|
22 |
AutoProcessor,
|
|
|
23 |
)
|
24 |
from transformers.image_utils import load_image
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Constants for text generation
|
27 |
MAX_MAX_NEW_TOKENS = 2048
|
28 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
@@ -30,271 +35,416 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
30 |
|
31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
|
33 |
-
# Load
|
34 |
-
|
35 |
-
|
36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
37 |
-
model_id,
|
38 |
-
device_map="auto",
|
39 |
-
torch_dtype=torch.bfloat16,
|
40 |
-
)
|
41 |
-
model.eval()
|
42 |
-
|
43 |
-
# Load multimodal processor and model
|
44 |
-
MODEL_ID = "prithivMLmods/Imgscope-OCR-2B-0527"
|
45 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
46 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
47 |
-
|
48 |
trust_remote_code=True,
|
49 |
torch_dtype=torch.float16
|
50 |
-
).to(
|
51 |
-
|
52 |
-
# Edge TTS voices mapping for new tags.
|
53 |
-
TTS_VOICE_MAP = {
|
54 |
-
"@jennyneural": "en-US-JennyNeural",
|
55 |
-
"@guyneural": "en-US-GuyNeural",
|
56 |
-
"@palomaneural": "es-US-PalomaNeural",
|
57 |
-
"@alonsoneural": "es-US-AlonsoNeural",
|
58 |
-
"@madhurneural": "hi-IN-MadhurNeural"
|
59 |
-
}
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def downsample_video(video_path):
|
81 |
-
"""
|
82 |
-
Downsamples the video to 10 evenly spaced frames.
|
83 |
-
Each frame is returned as a PIL image along with its timestamp.
|
84 |
-
"""
|
85 |
vidcap = cv2.VideoCapture(video_path)
|
86 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
87 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
88 |
frames = []
|
89 |
-
# Sample 10 evenly spaced frames.
|
90 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
91 |
for i in frame_indices:
|
92 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
93 |
success, image = vidcap.read()
|
94 |
if success:
|
95 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
96 |
pil_image = Image.fromarray(image)
|
97 |
timestamp = round(i / fps, 2)
|
98 |
frames.append((pil_image, timestamp))
|
99 |
vidcap.release()
|
100 |
return frames
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
@spaces.GPU
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
text = text[len(tag):].strip() # Remove the tag from the prompt.
|
145 |
-
break
|
146 |
-
|
147 |
-
# Branch for video processing with Callisto OCR3.
|
148 |
-
if lower_text.startswith("@video-infer"):
|
149 |
-
prompt = text[len("@video-infer"):].strip() if not tts_voice else text
|
150 |
-
if files:
|
151 |
-
# Assume the first file is a video.
|
152 |
-
video_path = files[0]
|
153 |
-
frames = downsample_video(video_path)
|
154 |
-
messages = [
|
155 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
156 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
157 |
-
]
|
158 |
-
# Append each frame with its timestamp.
|
159 |
-
for frame in frames:
|
160 |
-
image, timestamp = frame
|
161 |
-
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
162 |
-
image.save(image_path)
|
163 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
164 |
-
messages[1]["content"].append({"type": "image", "url": image_path})
|
165 |
else:
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
181 |
generation_kwargs = {
|
182 |
**inputs,
|
183 |
"streamer": streamer,
|
184 |
"max_new_tokens": max_new_tokens,
|
185 |
-
"do_sample": True,
|
186 |
"temperature": temperature,
|
187 |
"top_p": top_p,
|
188 |
"top_k": top_k,
|
189 |
"repetition_penalty": repetition_penalty,
|
190 |
}
|
191 |
-
thread = Thread(target=
|
192 |
thread.start()
|
|
|
193 |
buffer = ""
|
194 |
-
|
195 |
for new_text in streamer:
|
196 |
-
|
197 |
-
buffer
|
198 |
-
time.sleep(0.01)
|
199 |
yield buffer
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
else:
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
text
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
228 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
229 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
230 |
-
thread.start()
|
231 |
-
buffer = ""
|
232 |
-
yield progress_bar_html("Processing image with Imgscope-OCR")
|
233 |
-
for new_text in streamer:
|
234 |
-
buffer += new_text
|
235 |
-
buffer = buffer.replace("<|im_end|>", "")
|
236 |
-
time.sleep(0.01)
|
237 |
-
yield buffer
|
238 |
-
else:
|
239 |
-
# Normal text conversation processing with Pocket Llama.
|
240 |
-
conversation = clean_chat_history(chat_history)
|
241 |
-
conversation.append({"role": "user", "content": text})
|
242 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
243 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
244 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
245 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
246 |
-
input_ids = input_ids.to(model.device)
|
247 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
248 |
generation_kwargs = {
|
249 |
-
|
250 |
"streamer": streamer,
|
251 |
"max_new_tokens": max_new_tokens,
|
252 |
-
"
|
253 |
"top_p": top_p,
|
254 |
"top_k": top_k,
|
255 |
-
"temperature": temperature,
|
256 |
-
"num_beams": 1,
|
257 |
"repetition_penalty": repetition_penalty,
|
258 |
}
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
263 |
for new_text in streamer:
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
],
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
],
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
if __name__ == "__main__":
|
300 |
-
demo.queue(max_size=
|
|
|
10 |
import spaces
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
+
from PIL import Image, ImageOps
|
14 |
import cv2
|
|
|
15 |
|
16 |
from transformers import (
|
|
|
|
|
|
|
17 |
Qwen2VLForConditionalGeneration,
|
18 |
+
VisionEncoderDecoderModel,
|
19 |
+
AutoModelForVision2Seq,
|
20 |
AutoProcessor,
|
21 |
+
TextIteratorStreamer,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
24 |
|
25 |
+
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
26 |
+
|
27 |
+
import re
|
28 |
+
import ast
|
29 |
+
import html
|
30 |
+
|
31 |
# Constants for text generation
|
32 |
MAX_MAX_NEW_TOKENS = 2048
|
33 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
|
|
35 |
|
36 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
|
38 |
+
# Load olmOCR-7B-0225-preview
|
39 |
+
MODEL_ID_M = "allenai/olmOCR-7B-0225-preview"
|
40 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
42 |
+
MODEL_ID_M,
|
43 |
trust_remote_code=True,
|
44 |
torch_dtype=torch.float16
|
45 |
+
).to(device).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Load ByteDance's Dolphin
|
48 |
+
MODEL_ID_K = "ByteDance/Dolphin"
|
49 |
+
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
|
50 |
+
model_k = VisionEncoderDecoderModel.from_pretrained(
|
51 |
+
MODEL_ID_K,
|
52 |
+
trust_remote_code=True,
|
53 |
+
torch_dtype=torch.float16
|
54 |
+
).to(device).eval()
|
55 |
+
|
56 |
+
# Load SmolDocling-256M-preview
|
57 |
+
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
58 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
59 |
+
model_x = AutoModelForVision2Seq.from_pretrained(
|
60 |
+
MODEL_ID_X,
|
61 |
+
trust_remote_code=True,
|
62 |
+
torch_dtype=torch.float16
|
63 |
+
).to(device).eval()
|
64 |
+
|
65 |
+
|
66 |
+
# Preprocessing functions for SmolDocling-256M
|
67 |
+
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
68 |
+
"""Add random padding to an image based on its size."""
|
69 |
+
image = image.convert("RGB")
|
70 |
+
width, height = image.size
|
71 |
+
pad_w_percent = random.uniform(min_percent, max_percent)
|
72 |
+
pad_h_percent = random.uniform(min_percent, max_percent)
|
73 |
+
pad_w = int(width * pad_w_percent)
|
74 |
+
pad_h = int(height * pad_h_percent)
|
75 |
+
corner_pixel = image.getpixel((0, 0)) # Top-left corner
|
76 |
+
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
|
77 |
+
return padded_image
|
78 |
+
|
79 |
+
def normalize_values(text, target_max=500):
|
80 |
+
"""Normalize numerical values in text to a target maximum."""
|
81 |
+
def normalize_list(values):
|
82 |
+
max_value = max(values) if values else 1
|
83 |
+
return [round((v / max_value) * target_max) for v in values]
|
84 |
+
|
85 |
+
def process_match(match):
|
86 |
+
num_list = ast.literal_eval(match.group(0))
|
87 |
+
normalized = normalize_list(num_list)
|
88 |
+
return "".join([f"<loc_{num}>" for num in normalized])
|
89 |
+
|
90 |
+
pattern = r"\[([\d\.\s,]+)\]"
|
91 |
+
normalized_text = re.sub(pattern, process_match, text)
|
92 |
+
return normalized_text
|
93 |
|
94 |
def downsample_video(video_path):
|
95 |
+
"""Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
|
|
|
|
|
|
|
96 |
vidcap = cv2.VideoCapture(video_path)
|
97 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
98 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
99 |
frames = []
|
|
|
100 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
101 |
for i in frame_indices:
|
102 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
103 |
success, image = vidcap.read()
|
104 |
if success:
|
105 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
106 |
pil_image = Image.fromarray(image)
|
107 |
timestamp = round(i / fps, 2)
|
108 |
frames.append((pil_image, timestamp))
|
109 |
vidcap.release()
|
110 |
return frames
|
111 |
|
112 |
+
# Dolphin-specific functions
|
113 |
+
def model_chat(prompt, image):
|
114 |
+
"""Use Dolphin model for inference."""
|
115 |
+
processor = processor_k
|
116 |
+
model = model_k
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
119 |
+
pixel_values = inputs.pixel_values.half()
|
120 |
+
prompt_inputs = processor.tokenizer(
|
121 |
+
f"<s>{prompt} <Answer/>",
|
122 |
+
add_special_tokens=False,
|
123 |
+
return_tensors="pt"
|
124 |
+
).to(device)
|
125 |
+
outputs = model.generate(
|
126 |
+
pixel_values=pixel_values,
|
127 |
+
decoder_input_ids=prompt_inputs.input_ids,
|
128 |
+
decoder_attention_mask=prompt_inputs.attention_mask,
|
129 |
+
min_length=1,
|
130 |
+
max_length=4096,
|
131 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
132 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
133 |
+
use_cache=True,
|
134 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
135 |
+
return_dict_in_generate=True,
|
136 |
+
do_sample=False,
|
137 |
+
num_beams=1,
|
138 |
+
repetition_penalty=1.1
|
139 |
+
)
|
140 |
+
sequence = processor.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
|
141 |
+
cleaned = sequence.replace(f"<s>{prompt} <Answer/>", "").replace("<pad>", "").replace("</s>", "").strip()
|
142 |
+
return cleaned
|
143 |
+
|
144 |
+
def process_elements(layout_results, image):
|
145 |
+
"""Parse layout results and extract elements from the image."""
|
146 |
+
# Placeholder parsing logic based on expected Dolphin output
|
147 |
+
# Assuming layout_results is a string like "[(x1,y1,x2,y2,label), ...]"
|
148 |
+
try:
|
149 |
+
elements = ast.literal_eval(layout_results)
|
150 |
+
except:
|
151 |
+
elements = [] # Fallback if parsing fails
|
152 |
+
|
153 |
+
recognition_results = []
|
154 |
+
reading_order = 0
|
155 |
+
|
156 |
+
for bbox, label in elements:
|
157 |
+
try:
|
158 |
+
x1, y1, x2, y2 = map(int, bbox)
|
159 |
+
cropped = image.crop((x1, y1, x2, y2))
|
160 |
+
if cropped.size[0] > 0 and cropped.size[1] > 0:
|
161 |
+
if label == "text":
|
162 |
+
text = model_chat("Read text in the image.", cropped)
|
163 |
+
recognition_results.append({
|
164 |
+
"label": label,
|
165 |
+
"bbox": [x1, y1, x2, y2],
|
166 |
+
"text": text.strip(),
|
167 |
+
"reading_order": reading_order
|
168 |
+
})
|
169 |
+
elif label == "table":
|
170 |
+
table_text = model_chat("Parse the table in the image.", cropped)
|
171 |
+
recognition_results.append({
|
172 |
+
"label": label,
|
173 |
+
"bbox": [x1, y1, x2, y2],
|
174 |
+
"text": table_text.strip(),
|
175 |
+
"reading_order": reading_order
|
176 |
+
})
|
177 |
+
elif label == "figure":
|
178 |
+
recognition_results.append({
|
179 |
+
"label": label,
|
180 |
+
"bbox": [x1, y1, x2, y2],
|
181 |
+
"text": "[Figure]", # Placeholder for figure content
|
182 |
+
"reading_order": reading_order
|
183 |
+
})
|
184 |
+
reading_order += 1
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error processing element: {e}")
|
187 |
+
continue
|
188 |
+
|
189 |
+
return recognition_results
|
190 |
+
|
191 |
+
def generate_markdown(recognition_results):
|
192 |
+
"""Generate markdown from extracted elements."""
|
193 |
+
markdown = ""
|
194 |
+
for element in sorted(recognition_results, key=lambda x: x["reading_order"]):
|
195 |
+
if element["label"] == "text":
|
196 |
+
markdown += f"{element['text']}\n\n"
|
197 |
+
elif element["label"] == "table":
|
198 |
+
markdown += f"**Table:**\n{element['text']}\n\n"
|
199 |
+
elif element["label"] == "figure":
|
200 |
+
markdown += f"{element['text']}\n\n"
|
201 |
+
return markdown.strip()
|
202 |
+
|
203 |
+
def process_image_with_dolphin(image):
|
204 |
+
"""Process a single image with Dolphin model."""
|
205 |
+
layout_output = model_chat("Parse the reading order of this document.", image)
|
206 |
+
elements = process_elements(layout_output, image)
|
207 |
+
markdown_content = generate_markdown(elements)
|
208 |
+
return markdown_content
|
209 |
|
210 |
@spaces.GPU
|
211 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
212 |
+
max_new_tokens: int = 1024,
|
213 |
+
temperature: float = 0.6,
|
214 |
+
top_p: float = 0.9,
|
215 |
+
top_k: int = 50,
|
216 |
+
repetition_penalty: float = 1.2):
|
217 |
+
"""Generate responses for image input using the selected model."""
|
218 |
+
if model_name == "ByteDance-s-Dolphin":
|
219 |
+
if image is None:
|
220 |
+
yield "Please upload an image."
|
221 |
+
return
|
222 |
+
markdown_content = process_image_with_dolphin(image)
|
223 |
+
yield markdown_content
|
224 |
+
else:
|
225 |
+
# Existing logic for other models
|
226 |
+
if model_name == "olmOCR-7B-0225-preview":
|
227 |
+
processor = processor_m
|
228 |
+
model = model_m
|
229 |
+
elif model_name == "SmolDocling-256M-preview":
|
230 |
+
processor = processor_x
|
231 |
+
model = model_x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
else:
|
233 |
+
yield "Invalid model selected."
|
234 |
+
return
|
235 |
+
|
236 |
+
if image is None:
|
237 |
+
yield "Please upload an image."
|
238 |
+
return
|
239 |
+
|
240 |
+
images = [image]
|
241 |
+
|
242 |
+
if model_name == "SmolDocling-256M-preview":
|
243 |
+
if "OTSL" in text or "code" in text:
|
244 |
+
images = [add_random_padding(img) for img in images]
|
245 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
246 |
+
text = normalize_values(text, target_max=500)
|
247 |
+
|
248 |
+
messages = [
|
249 |
+
{
|
250 |
+
"role": "user",
|
251 |
+
"content": [{"type": "image"} for _ in images] + [
|
252 |
+
{"type": "text", "text": text}
|
253 |
+
]
|
254 |
+
}
|
255 |
+
]
|
256 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
257 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
258 |
+
|
259 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
260 |
generation_kwargs = {
|
261 |
**inputs,
|
262 |
"streamer": streamer,
|
263 |
"max_new_tokens": max_new_tokens,
|
|
|
264 |
"temperature": temperature,
|
265 |
"top_p": top_p,
|
266 |
"top_k": top_k,
|
267 |
"repetition_penalty": repetition_penalty,
|
268 |
}
|
269 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
270 |
thread.start()
|
271 |
+
|
272 |
buffer = ""
|
273 |
+
full_output = ""
|
274 |
for new_text in streamer:
|
275 |
+
full_output += new_text
|
276 |
+
buffer += new_text.replace("<|im_end|>", "")
|
|
|
277 |
yield buffer
|
278 |
+
|
279 |
+
if model_name == "SmolDocling-256M-preview":
|
280 |
+
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
281 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
282 |
+
if "<chart>" in cleaned_output:
|
283 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
284 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
285 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
286 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
287 |
+
markdown_output = doc.export_to_markdown()
|
288 |
+
yield f"**MD Output:**\n\n{markdown_output}"
|
289 |
+
else:
|
290 |
+
yield cleaned_output
|
291 |
+
|
292 |
+
@spaces.GPU
|
293 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
294 |
+
max_new_tokens: int = 1024,
|
295 |
+
temperature: float = 0.6,
|
296 |
+
top_p: float = 0.9,
|
297 |
+
top_k: int = 50,
|
298 |
+
repetition_penalty: float = 1.2):
|
299 |
+
"""Generate responses for video input using the selected model."""
|
300 |
+
if model_name == "ByteDance-s-Dolphin":
|
301 |
+
if video_path is None:
|
302 |
+
yield "Please upload a video."
|
303 |
+
return
|
304 |
+
frames = downsample_video(video_path)
|
305 |
+
markdown_contents = []
|
306 |
+
for frame, _ in frames:
|
307 |
+
markdown_content = process_image_with_dolphin(frame)
|
308 |
+
markdown_contents.append(markdown_content)
|
309 |
+
combined_markdown = "\n\n".join(markdown_contents)
|
310 |
+
yield combined_markdown
|
311 |
+
else:
|
312 |
+
# Existing logic for other models
|
313 |
+
if model_name == "olmOCR-7B-0225-preview":
|
314 |
+
processor = processor_m
|
315 |
+
model = model_m
|
316 |
+
elif model_name == "SmolDocling-256M-preview":
|
317 |
+
processor = processor_x
|
318 |
+
model = model_x
|
319 |
else:
|
320 |
+
yield "Invalid model selected."
|
321 |
+
return
|
322 |
+
|
323 |
+
if video_path is None:
|
324 |
+
yield "Please upload a video."
|
325 |
+
return
|
326 |
+
|
327 |
+
frames = downsample_video(video_path)
|
328 |
+
images = [frame for frame, _ in frames]
|
329 |
+
|
330 |
+
if model_name == "SmolDocling-256M-preview":
|
331 |
+
if "OTSL" in text or "code" in text:
|
332 |
+
images = [add_random_padding(img) for img in images]
|
333 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
334 |
+
text = normalize_values(text, target_max=500)
|
335 |
+
|
336 |
+
messages = [
|
337 |
+
{
|
338 |
+
"role": "user",
|
339 |
+
"content": [{"type": "image"} for _ in images] + [
|
340 |
+
{"type": "text", "text": text}
|
341 |
+
]
|
342 |
+
}
|
343 |
+
]
|
344 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
345 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
346 |
+
|
347 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
generation_kwargs = {
|
349 |
+
**inputs,
|
350 |
"streamer": streamer,
|
351 |
"max_new_tokens": max_new_tokens,
|
352 |
+
"temperature": temperature,
|
353 |
"top_p": top_p,
|
354 |
"top_k": top_k,
|
|
|
|
|
355 |
"repetition_penalty": repetition_penalty,
|
356 |
}
|
357 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
358 |
+
thread.start()
|
359 |
+
|
360 |
+
buffer = ""
|
361 |
+
full_output = ""
|
362 |
for new_text in streamer:
|
363 |
+
full_output += new_text
|
364 |
+
buffer += new_text.replace("<|im_end|>", "")
|
365 |
+
yield buffer
|
366 |
+
|
367 |
+
if model_name == "SmolDocling-256M-preview":
|
368 |
+
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
|
369 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
370 |
+
if "<chart>" in cleaned_output:
|
371 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
372 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
373 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
374 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
375 |
+
markdown_output = doc.export_to_markdown()
|
376 |
+
yield f"**MD Output:**\n\n{markdown_output}"
|
377 |
+
else:
|
378 |
+
yield cleaned_output
|
379 |
+
|
380 |
+
# Define examples for image and video inference
|
381 |
+
image_examples = [
|
382 |
+
["Convert this page to docling", "images/1.png"],
|
383 |
+
["OCR the image", "images/2.jpg"],
|
384 |
+
["Convert this page to docling", "images/3.png"],
|
385 |
+
]
|
386 |
+
|
387 |
+
video_examples = [
|
388 |
+
["Explain the ad in detail", "example/1.mp4"],
|
389 |
+
["Identify the main actions in the coca cola ad...", "example/2.mp4"]
|
390 |
+
]
|
391 |
+
|
392 |
+
css = """
|
393 |
+
.submit-btn {
|
394 |
+
background-color: #2980b9 !important;
|
395 |
+
color: white !important;
|
396 |
+
}
|
397 |
+
.submit-btn:hover {
|
398 |
+
background-color: #3498db !important;
|
399 |
+
}
|
400 |
+
"""
|
401 |
+
|
402 |
+
# Create the Gradio Interface
|
403 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
404 |
+
gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
405 |
+
with gr.Row():
|
406 |
+
with gr.Column():
|
407 |
+
with gr.Tabs():
|
408 |
+
with gr.TabItem("Image Inference"):
|
409 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
410 |
+
image_upload = gr.Image(type="pil", label="Image")
|
411 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
412 |
+
gr.Examples(
|
413 |
+
examples=image_examples,
|
414 |
+
inputs=[image_query, image_upload]
|
415 |
+
)
|
416 |
+
with gr.TabItem("Video Inference"):
|
417 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
418 |
+
video_upload = gr.Video(label="Video")
|
419 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
420 |
+
gr.Examples(
|
421 |
+
examples=video_examples,
|
422 |
+
inputs=[video_query, video_upload]
|
423 |
+
)
|
424 |
+
with gr.Accordion("Advanced options", open=False):
|
425 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
426 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
427 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
428 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
429 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
430 |
+
with gr.Column():
|
431 |
+
output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
|
432 |
+
model_choice = gr.Radio(
|
433 |
+
choices=["olmOCR-7B-0225-preview", "SmolDocling-256M-preview", "ByteDance-s-Dolphin"],
|
434 |
+
label="Select Model",
|
435 |
+
value="olmOCR-7B-0225-preview"
|
436 |
+
)
|
437 |
+
|
438 |
+
image_submit.click(
|
439 |
+
fn=generate_image,
|
440 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
441 |
+
outputs=output
|
442 |
+
)
|
443 |
+
video_submit.click(
|
444 |
+
fn=generate_video,
|
445 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
446 |
+
outputs=output
|
447 |
+
)
|
448 |
|
449 |
if __name__ == "__main__":
|
450 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|