import os import time import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # Define model details MODEL_REPO = "prithivMLmods/Sombrero-QwQ-32B-Elite10-Fixed-Q2_K-GGUF" MODEL_FILENAME = "sombrero-qwq-32b-elite10-fixed-q2_k.gguf" MODEL_DIR = "./models" MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILENAME) # Ensure the model directory exists os.makedirs(MODEL_DIR, exist_ok=True) # Download the model if not already present if not os.path.exists(MODEL_PATH): print("Downloading the model... This may take some time.") try: hf_hub_download( repo_id=MODEL_REPO, filename=MODEL_FILENAME, local_dir=MODEL_DIR ) print("Model downloaded successfully!") except Exception as e: print(f"Error downloading model: {e}") exit(1) # Ensure model is fully downloaded before using while not os.path.exists(MODEL_PATH): print("Waiting for model to be available...") time.sleep(5) # Function to handle AI responses @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.GEMMA_2 llm = Llama( model_path=MODEL_PATH, flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = {'role': Roles.user, 'content': msn[0]} assistant = {'role': Roles.assistant, 'content': msn[1]} messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs # Function to create Gradio interface def create_interface(model_name, description): return gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=model_name, label="Model", interactive=False), gr.Textbox( value="You are a helpful assistant. You should think step-by-step. You should answer all questions by prioritizing the principle of openness", label="System message" ), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"), ], retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title=f"{model_name}", description=description, chatbot=gr.Chatbot(scale=1, likeable=False, show_copy_button=True) ) # Set interface description description = """
Viper-Coder-32B-Elite13-GGUF
""" interface = create_interface(MODEL_REPO, description) # Create Gradio Blocks app demo = gr.Blocks() with demo: interface.render() if __name__ == "__main__": demo.launch(share=True)