Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,658 Bytes
c7906eb 91d2c01 218ebfb c7906eb 218ebfb c7906eb 91d2c01 c7906eb 218ebfb 91d2c01 218ebfb 91d2c01 c7906eb 91d2c01 218ebfb 280b089 218ebfb 91d2c01 c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 91d2c01 6ed0791 c7906eb a9be97c c7906eb 91d2c01 218ebfb 91d2c01 218ebfb fe76282 91d2c01 a9be97c 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 91d2c01 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb 91d2c01 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb 91d2c01 86a82e4 218ebfb 9a23baa 218ebfb c7906eb 218ebfb 91d2c01 c7906eb 218ebfb c7906eb 218ebfb c7906eb 218ebfb 86a82e4 b8a0d2d 91d2c01 c7906eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""
app.py
A unified Gradio chat application for Multimodal OCR Granite Vision.
Commands (enter these as a prefix in the text input):
- @rag: For retrieval‐augmented generation (e.g. PDF or text-based queries).
- @granite: For image understanding.
- @video-infer: For video understanding (video is downsampled into frames).
The app uses gr.MultimodalTextbox to support text input together with file uploads.
"""
import os
import time
import uuid
import random
import logging
from threading import Thread
from pathlib import Path
from datetime import datetime, timezone
import torch
import numpy as np
import cv2
from PIL import Image
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
AutoModelForVision2Seq,
)
# ---------------------------
# Utility functions and setup
# ---------------------------
def get_device():
if torch.backends.mps.is_available():
return "mps" # mac GPU
elif torch.cuda.is_available():
return "cuda"
else:
return "cpu"
device = get_device()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
def downsample_video(video_path):
"""
Downsamples the video into 10 evenly spaced frames.
Returns a list of (PIL Image, timestamp in seconds) tuples.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# ---------------------------
# HF Embedding and LLM classes
# ---------------------------
class HFEmbedding:
def __init__(self, model_id: str):
self.model_name = model_id
logging.info(f"Loading embeddings model from: {self.model_name}")
# Using langchain_huggingface for embeddings
from langchain_huggingface import HuggingFaceEmbeddings # ensure installed
# For simplicity, force CPU (adjust if needed)
self.embeddings_service = HuggingFaceEmbeddings(
model_name=self.model_name,
model_kwargs={"device": "cpu"},
)
def embed_documents(self, texts: list[str]) -> list[list[float]]:
return self.embeddings_service.embed_documents(texts)
def embed_query(self, text: str) -> list[float]:
return self.embed_documents([text])[0]
class HFLLM:
def __init__(self, model_name: str):
self.device = device
self.model_name = model_name
logging.info("Loading HF language model...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
def generate(self, prompt: str) -> list:
# Tokenize prompt and generate text
model_inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
generated_ids = self.model.generate(**model_inputs, max_new_tokens=1024)
generated_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
# Extract answer assuming a marker in the generated text
response = [{"answer": generated_texts[0].split("<|end_of_role|>")[-1].split("<|end_of_text|>")[0]}]
return response
# ---------------------------
# LightRAG: Retrieval-Augmented Generation (Dummy)
# ---------------------------
class LightRAG:
def __init__(self, config: dict):
self.config = config
# Load generation and embedding models immediately (or lazy load as needed)
self.gen_model = HFLLM(config['generation_model_id'])
self._embedding_model = HFEmbedding(config['embedding_model_id'])
def search(self, query: str, top_n: int = 5) -> list:
# Dummy retrieval: In practice, integrate with a vector store
from langchain_core.documents import Document # ensure langchain_core is installed
dummy_doc = Document(
page_content="Dummy context for query: " + query,
metadata={"type": "text"}
)
return [dummy_doc]
def generate(self, query, context=None):
if context is None:
context = []
# Build prompt by concatenating retrieved context with the query.
prompt = ""
for doc in context:
prompt += doc.page_content + "\n"
prompt += "\nQuestion: " + query + "\nAnswer:"
results = self.gen_model.generate(prompt)
answer = results[0]["answer"]
return answer, prompt
# Global configuration for LightRAG
rag_config = {
"embedding_model_id": "ibm-granite/granite-embedding-125m-english",
"generation_model_id": "ibm-granite/granite-3.1-8b-instruct",
}
light_rag = LightRAG(rag_config)
# ---------------------------
# Granite Vision functions (for image and video)
# ---------------------------
# Set the Granite Vision model ID (adjust version as needed)
GRANITE_MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
granite_processor = None
granite_model = None
def load_granite_model():
"""Lazy load the Granite vision processor and model."""
global granite_processor, granite_model
if granite_processor is None or granite_model is None:
granite_processor = AutoProcessor.from_pretrained(GRANITE_MODEL_ID)
granite_model = AutoModelForVision2Seq.from_pretrained(GRANITE_MODEL_ID, device_map="auto").to(device)
return granite_processor, granite_model
def create_single_turn(image, text):
"""
Creates a single-turn conversation message.
If an image is provided, it is added along with the text.
"""
if image is None:
return {"role": "user", "content": [{"type": "text", "text": text}]}
else:
return {"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]}
def generate_granite(image, prompt_text, max_new_tokens=1024, temperature=0.7, top_p=0.85, top_k=50, repetition_penalty=1.05):
"""
Generates a response from the Granite Vision model given an image and prompt.
"""
processor, model = load_granite_model()
conversation = [create_single_turn(image, prompt_text)]
inputs = processor.apply_chat_template(
conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(device)
output = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
decoded = processor.decode(output[0], skip_special_tokens=True)
parts = decoded.strip().split("<|assistant|>")
return parts[-1].strip()
def generate_video_infer(video_path, prompt_text, max_new_tokens=1024, temperature=0.7, top_p=0.85, top_k=50, repetition_penalty=1.05):
"""
Processes a video file by downsampling frames and sending them along with a prompt
to the Granite Vision model.
"""
frames = downsample_video(video_path)
conversation_content = []
for img, ts in frames:
conversation_content.append({"type": "text", "text": f"Frame at {ts} sec:"})
conversation_content.append({"type": "image", "image": img})
conversation_content.append({"type": "text", "text": prompt_text})
conversation = [{"role": "user", "content": conversation_content}]
processor, model = load_granite_model()
inputs = processor.apply_chat_template(
conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(device)
output = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
decoded = processor.decode(output[0], skip_special_tokens=True)
parts = decoded.strip().split("<|assistant|>")
return parts[-1].strip()
# ---------------------------
# Unified generation function for ChatInterface
# ---------------------------
def generate(input_dict: dict, chat_history: list[dict],
max_new_tokens: int, temperature: float,
top_p: float, top_k: int, repetition_penalty: float):
"""
Chat function that inspects the input text for special commands and routes:
- @rag: Uses the RAG pipeline.
- @granite: Uses Granite Vision for image understanding.
- @video-infer: Uses Granite Vision for video processing.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.strip().lower()
# Optionally yield a progress message
yield "Processing your request..."
time.sleep(1) # simulate processing delay
if lower_text.startswith("@rag"):
query = text[len("@rag"):].strip()
logging.info(f"@rag command: {query}")
context = light_rag.search(query)
answer, _ = light_rag.generate(query, context)
yield answer
elif lower_text.startswith("@granite"):
prompt_text = text[len("@granite"):].strip()
logging.info(f"@granite command: {prompt_text}")
if files:
# Expecting an image file (as a PIL image)
image = files[0]
answer = generate_granite(image, prompt_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty)
yield answer
else:
yield "No image provided for @granite command."
elif lower_text.startswith("@video-infer"):
prompt_text = text[len("@video-infer"):].strip()
logging.info(f"@video-infer command: {prompt_text}")
if files:
# Expecting a video file (the file path)
video_path = files[0]
answer = generate_video_infer(video_path, prompt_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty)
yield answer
else:
yield "No video provided for @video-infer command."
else:
# Default behavior: use RAG pipeline for text query.
query = text.strip()
logging.info(f"Default text query: {query}")
context = light_rag.search(query)
answer, _ = light_rag.generate(query, context)
yield answer
# ---------------------------
# Gradio ChatInterface using MultimodalTextbox
# ---------------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, step=0.1, value=0.85),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.05),
],
examples=[
# Examples show how to use the command prefixes.
[{"text": "@rag What models are available in Watsonx?"}],
[{"text": "@granite Describe the image", "files": [str(Path("examples") / "sample_image.png")]}],
[{"text": "@video-infer Summarize the event in the video", "files": [str(Path("examples") / "sample_video.mp4")]}],
],
cache_examples=False,
type="messages",
description=(
"# **Multimodal OCR Granite Vision**\n\n"
"Enter a command in the text input (with optional file uploads) using one of the following prefixes:\n\n"
"- **@rag**: For retrieval-augmented generation (e.g. PDFs, documents).\n"
"- **@granite**: For image understanding using Granite Vision.\n"
"- **@video-infer**: For video understanding (video is downsampled into frames).\n\n"
"For example:\n```\n@rag What is the revenue trend?\n```\n```\n@granite Describe this image\n```\n```\n@video-infer Summarize the event in this video\n```"
),
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video", "pdf"],
file_count="multiple",
placeholder="@rag, @granite, or @video-infer followed by your prompt"
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |