File size: 5,724 Bytes
b8a0d2d
8716c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50fda8e
8716c2f
 
b8a0d2d
 
8716c2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import time
from PIL import Image
from threading import Thread
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image

#####################################
# 1. Load Qwen2.5-VL Model & Processor
#####################################
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"  # or "Qwen/Qwen2.5-VL-3B-Instruct"

processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda")
model.eval()

#####################################
# 2. Helper Function: Downsample Video
#####################################
def downsample_video(video_path, num_frames=10):
    """
    Downsamples the video file to `num_frames` evenly spaced frames.
    Each frame is converted to a PIL Image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames

    frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

#####################################
# 3. The Inference Function
#####################################
def video_inference(video_file, duration):
    """
    - Takes a recorded video file and a chosen duration (string).
    - Downsamples the video, passes frames to Qwen2.5-VL for inference.
    - Returns model-generated text + a dummy bar chart as example analytics.
    """
    if video_file is None:
        return "No video provided.", None

    # 3.1: Downsample the recorded video
    frames = downsample_video(video_file)
    if not frames:
        return "Could not read frames from video.", None

    # 3.2: Construct Qwen2.5-VL prompt
    # We'll do a simple prompt: "Please describe what's happening in this video."
    messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": "Please describe what's happening in this video."}]
        }
    ]

    # Add frames (with timestamp) to the messages
    for (image, ts) in frames:
        messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
        messages[0]["content"].append({"type": "image", "image": image})

    # Prepare final prompt for the model
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    # Qwen requires images in the same order. We'll just collect them:
    frame_images = [img for (img, _) in frames]

    inputs = processor(
        text=[prompt],
        images=frame_images,
        return_tensors="pt",
        padding=True
    ).to("cuda")

    # 3.3: Generate text output
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)

    # We'll run generation in a thread to simulate streaming.
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Collect the streamed text
    generated_text = ""
    for new_text in streamer:
        generated_text += new_text
        # Sleep briefly to yield control
        time.sleep(0.01)

    # 3.4: Dummy bar chart for demonstration
    fig, ax = plt.subplots()
    categories = ["Category A", "Category B", "Category C"]
    values = [random.randint(1, 10) for _ in categories]
    ax.bar(categories, values, color=["#4B0082", "#9370DB", "#4B0082"])
    ax.set_title("Example Analytics Chart")
    ax.set_ylabel("Value")
    ax.set_xlabel("Category")

    # Return text + figure
    return generated_text, fig

#####################################
# 4. Build a Professional Gradio UI
#####################################
def build_app():
    with gr.Blocks() as demo:
        gr.Markdown("""
        # **Qwen2.5-VL-7B-Instruct Live Video Analysis**  
        Record your webcam for a chosen duration, then click **Stop** to finalize.  
        After that, click **Analyze** to run Qwen2.5-VL and see textual + chart outputs.
        """)

        with gr.Row():
            with gr.Column():
                duration = gr.Radio(
                    choices=["5", "10", "20", "30"],
                    value="5",
                    label="Suggested Recording Duration (seconds)",
                    info="Select how long you plan to record before pressing Stop."
                )
                video = gr.Video(
                    source="webcam",
                    format="mp4",
                    label="Webcam Recording (press the Record button, then Stop)"
                )
                analyze_btn = gr.Button("Analyze", variant="primary")
            with gr.Column():
                output_text = gr.Textbox(label="Model Output")
                output_plot = gr.Plot(label="Analytics Chart")

        analyze_btn.click(
            fn=video_inference,
            inputs=[video, duration],
            outputs=[output_text, output_plot]
        )

    return demo

if __name__ == "__main__":
    app = build_app()
    app.launch(debug=True)