Doc-VLMs / app.py
prithivMLmods's picture
Update app.py
0109e78 verified
raw
history blame
4.22 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16,
).to("cuda")
@spaces.GPU
def model_inference(
input_dict, history, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
text = input_dict["text"]
print(input_dict["files"])
# Process input images if provided.
if len(input_dict["files"]) > 1:
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
images = [Image.open(input_dict["files"][0]).convert("RGB")]
else:
images = []
# Validate input
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
# Prepare prompt using the chat template.
resulting_messages = [{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Setup generation parameters.
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
}
assert decoding_strategy in ["Greedy", "Top P Sampling"]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
generation_args.update(inputs)
# Generate output with a streaming approach.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Define the ChatInterface without examples.
demo = gr.ChatInterface(
fn=model_inference,
description="# **SmolVLM Video Infer**",
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
additional_inputs=[
gr.Radio(
["Top P Sampling", "Greedy"],
value="Greedy",
label="Decoding strategy",
info="Higher values is equivalent to sampling more low-probability tokens.",
),
gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
),
gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
),
gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
),
gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
],
cache_examples=False
)
demo.launch(debug=True)