Doc-VLMs / app.py
prithivMLmods's picture
Update app.py
5f8d25f verified
raw
history blame
4.2 kB
import os
import time
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
# Define model details
MODEL_REPO = "prithivMLmods/Sombrero-QwQ-32B-Elite10-Fixed-Q2_K-GGUF"
MODEL_FILENAME = "sombrero-qwq-32b-elite10-fixed-q2_k.gguf"
MODEL_DIR = "./models"
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILENAME)
# Ensure the model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)
# Download the model if not already present
if not os.path.exists(MODEL_PATH):
print("Downloading the model... This may take some time.")
try:
hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir=MODEL_DIR
)
print("Model downloaded successfully!")
except Exception as e:
print(f"Error downloading model: {e}")
exit(1)
# Ensure model is fully downloaded before using
while not os.path.exists(MODEL_PATH):
print("Waiting for model to be available...")
time.sleep(5)
# Function to handle AI responses
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
llm = Llama(
model_path=MODEL_PATH,
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
# Function to create Gradio interface
def create_interface(model_name, description):
return gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=model_name, label="Model", interactive=False),
gr.Textbox(
value="You are a helpful assistant. You should think step-by-step. You should answer all questions by prioritizing the principle of openness",
label="System message"
),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title=f"{model_name}",
description=description,
chatbot=gr.Chatbot(scale=1, likeable=False, show_copy_button=True)
)
# Set interface description
description = """<p align="center">Viper-Coder-32B-Elite13-GGUF</p>"""
interface = create_interface(MODEL_REPO, description)
# Create Gradio Blocks app
demo = gr.Blocks()
with demo:
interface.render()
if __name__ == "__main__":
demo.launch(share=True)